redis 集群 底层原理以及实操

前言

上篇我们讲解了哨兵集群是怎么回事

也说了对应的leader选举raft算法

也说了对应的slave节点是怎么被leader提拔的

主要是比较优先级 比较同步偏移量 比较runid等等

今天我们再说说,其实哨兵也有很多缺点

虽然在master挂了之后能很快帮我们选举出新的master

但是对于单个master承受的压力过大的情况还是没有得到很好的解决

因此,我们就推出了新的技术  集群cluster

于是我们也就放弃了原有的哨兵操作

下面我们慢慢介绍

结构

首先我们也是先看看原来的哨兵架构

再来看看今天要介绍的集群架构

这里对应master之间是数据共享的

至于为什么我们下面慢慢介绍

由于集群自带故障迁移,这里也是自然取代了哨兵

首先我们先介绍几个基本的概念

分片

这里分片的意思就是对应的每个节点负责一部分的槽位数据

一个集群负责所有的数据

一个节点就负责一片片区的数据

槽位

上面我们提到的一片片区的基本单位就是槽位

是由16384个槽位组成的

注:这里建议节点数不要超过1k

上述的架构可以这样理解

哈希算法

我们如何找到对应的槽位呢?

通过一次CRC16算法再&0x3FFF即可

哈希映射有哪些 方式呢???

1.哈希取余分区算法

简单有效

将对应的哈希值取模一个机器数量即可

缺点就是扩容比较困难

我们需要将所有数据key进行一次rehash的操作

2.一致性哈希分区算法

首先由一个重要的概念称之为哈希环

也就是将所有数据首位相连成一个一致性哈希环

假设是0-65535

这里0和65536指向的就是同一块位置

逻辑图如下

这样我们也就得到了一个所有哈希值的全量集

接着将对应的服务器ip进行对应的映射

最后就是对应的key进行hash了

就是顺时针找到的第一个节点就负责存储这一个键值对

优点是容错性好,缺失一个节点也能直接使用下一个遇见的redis节点进行存储

扩展性好,假设需要加上一个节点x,就只需要移动一小块区域的数据

如上图 我们只需要移动对应的a到x的数据即可

但是缺点也是存在的

很可能出现数据倾斜的问题

也就是说头重脚轻,分配不均匀的情况

于是我们就使用了哈希槽的方式解决问题

3.哈希槽分区算法

就是我们之前说的将16384个哈希槽分给不同的节点来保存

这里主要就是一个使用CRC16(key) 再进行了一次取模16384的操作

主要架构如下

为啥是16384???

为啥是16384个槽位呢

主要是因为以下原因

1.首先客户端每隔一段时间会给服务器发送心跳包,心跳包中就有槽位的数据

如果需要65536个槽位这里的数据量就达到了8K,但是如果是16384个槽位这里的数据就只有2k,这样的性能更好不容易导致网络阻塞

2.官网声明不可以使用超过1000个节点

因为节点过多就会导致传输数据的失真等等,也是不可取的

这里16384个槽位也是足够使用的

3.对于文件的压缩

发送的数据包如果太大就不方便压缩了

这里16384个槽位slot是刚刚好的

数据丢失

注:redis集群并没有保证数据的强一致性

假设我给1号机器写入数据还没来得及同步给从机就挂掉了

从机即使上位也无法得到之前的数据

集群搭建

首先我们在myredis下面创建新的cluster文件夹存放对应的配置文件

mkdir -p /myredis/cluster   这里-p就是父目录不存在也会创建  

我们三台虚拟机每台放两个配置文件

分别对应一主一从

对应的配置文件如下

这里我们使用的是从6381开始的6个redis节点

bind 0.0.0.0
daemonize yes
protected-mode no
port 6382
logfile "/myredis/cluster/cluster6382.log"
pidfile /myredis/cluster6382.pid
dir /myredis/cluster
dbfilename dump6382.rdb
appendonly yes
appendfilename "appendonly6382.aof"
requirepass 111111
masterauth 111111
cluster-enabled yes
cluster-config-file nodes-6382.conf
cluster-node-timeout 5000

在六个redis节点都启动之后我们开始创建集群

使用如下命令,注意结合自身ip 使用ifconfig可以查看

redis-cli -a abc123 --cluster create 
--cluster-replicas 1 192.168.188.136:6381 192.168.188.136:6382 
192.168.188.137:6383 192.168.188.137:6384 
192.168.188.138:6385 192.168.188.138:6386
这里replicas 1 就是每个主机配置一个从机 后面对应主从关系 使用任意一台vm进行操作即可

接下来直接yes即可

出现对应的配置文件即算配置成功

我们可以使用

cluster nodes 查看集群状态

注意这里不同的机器对应的槽位不同

所以set k1 v1 很可能会失败

而k2v2会成功

这是因为登入的是1号节点 而对应计算的槽位是由5号节点管理的

我们只需要在登录的时候在最后加上一个-c 以集群形式登录

此时遇到哪个集群就会自动跳转到对应的ip端口进行操作了

redis-cli -a abc123 -p 6381 -c

这里可以理解为路由/重定向

容灾

先说结论,主机挂了从机会上位

此时主机再回来也只能当从机了

下面是具体演示

手动shutdown6381

使用cluster nodes查看情况

我们发现对应的6384上位了

此时重启6381只能当小弟了

我们还可以进行对应的恢复

让6381继续当老大,6384继续当小弟

此时只需要登录6381进行对应的操作即可

cluster failover

此时6381就可以重回master

扩容

下面演示扩容节点

我们先在192.168.138第三台vm下创建两个配置文件

并启动对应的redis

加入集群只需要执行以下命令

找6381当做引路人即可

此时我们会发现虽然添加节点成功但是没有分配槽位

检查一下集群状态

redis-cli -a abc123 --cluster check 192.168.188.136:6381

我们需要进行reshard进行分配槽位

redis-cli -a abc123 --cluster reshard 192.168.188.138:6387

因为现在是4个节点所以分配一个节点4096个槽位

我们需要之前check的6387的id号

然后输入all

进行对应的reshard

在进行一次check查看对应的状态

最后为6387分配从节点

redis-cli -a abc123 --cluster add-node 192.168.188.138:6388 192.168.188.138:6387 --cluster-slave --cluster-master-id e03b3d6631033baa0961653ebec70800f6bf0fec

最后检查一下结构

最后四主四从也就搭建完成了

缩容

虽然基本上用不到,但是咱们主打一个完整性

首先清楚6388

使用上面的check指令获取对应的id

redis-cli -a abc123 --cluster del-node 192.168.188.138:6388  20dd91501451051961745a005f580858db6f7a2e

删除之后对应的子节点可以再查看一下

然后得执行reshard将对应的slot槽位分配回去

为了方便起见我们直接全分配给6381号机器即可


redis-cli -a abc123 --cluster reshard 192.168.188.136:6381

直接全部分配写4096

然后选择6381号机器的id

对应的done即可

此时我们再进行一次check

我们发现6387已经变成salve了

对应的槽位也清零了

最后进行删除节点操作

redis-cli -a abc123 --cluster del-node 192.168.188.138:6387 e03b3d6631033baa0961653ebec70800f6bf0fec

批处理操作

我们知道不同的key k1 k2 k3会被分配到不同的slot上

所以进行批处理查询操作是会报错的

如果我们想进行批处理

可以使用通配符将几个key映射为一组

类似于以下操作

我们在cluster.c的源文件中也可以找到对应的

我们发现redis会使用通配符{}中间的元素进行CRC算法

其他操作

redis还有一个重要参数

就是当假设分区1的主从节点都宕机了之后

我们对外还会不会进行服务暴露???

默认是yes 也就是不服务暴露的  但是我们也是可以设置服务暴露的

但是这时候就会有一些数据是不可访问的

重要的三个集群命令

cluster nodes  
查看节点情况


cluster countinkeysinslot slotId  
查看slot是否被占用


cluster keyslot k1
查看key使用的slot是啥
也就是进行了一次CRC16算法并取余16384

示例如下

说明1236槽位没有存放数据

说明k123会存放在4255槽位上

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/661501.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python调用阿里云通义千问(q-wen-max)API-只能总结pdf文档内容

文章目录 通义千问插件PDF解析插件调用案例通义千问插件 Dashscope插件功能能够使得大模型的生成内容与外部三方应用结合,使得模型生成的内容更加准确和丰富,模型将拥有更好的生成能力。您也可以通过开发自定义插件,来使得模型生成更符合您预期的结果。 使用插件功能,大模…

【UnityShader入门精要学习笔记】第十五章 使用噪声

本系列为作者学习UnityShader入门精要而作的笔记,内容将包括: 书本中句子照抄 个人批注项目源码一堆新手会犯的错误潜在的太监断更,有始无终 我的GitHub仓库 总之适用于同样开始学习Shader的同学们进行有取舍的参考。 文章目录 使用噪声上…

U盘无法打开?数据恢复与预防措施全解析

在日常生活和工作中,U盘已成为我们存储和传输数据的重要工具。然而,有时我们会遇到U盘无法打开的情况,这无疑给我们带来了诸多不便。本文将深入探讨U盘打不开的现象、原因及解决方案,并分享如何预防此类问题的发生。 一、U盘无法访…

20240529瑞芯微官方Toybrick TB-RK3588开发板的Debian11下使用SCP拷贝文件

20240529瑞芯微官方Toybrick TB-RK3588开发板的Debian11下使用SCP拷贝文件 2024/5/29 20:48 1、ADB链接异常。 2、BT打开之后找不到设备? 不清楚:是我拿到的开发板的问题,还是Toybrick/Rockchip官方没有做好。 3、现在最新版本的WINSCP&…

TREK高压发生器维修高压电源615-3-L-JX 615-3

美国TREK高压电源维修故障分析应注意两点: 故障分析检测和故障硬件更换,由高压电源故障和工作表现初步判断故障的类型和哪些硬件出了问题,初步判断缩小检测范围,通过排除法和更替新配件准确找到故障硬件。维修过程需要对trek电源维…

P2341 受欢迎的牛

题目描述 每一头牛的愿望就是变成一头最受欢迎的牛。现在有 N 头牛,给你 M 对整数,表示牛 A 认为牛 B 受欢迎。这种关系是具有传递性的,如果 A 认为 B 受欢迎,B 认为 C 受欢迎,那么牛 A 也认为牛 C 受欢迎。你的任务是…

el-upload上传文件使用http-request方法,formdata传集合List到后台

el-upload上传文件 前言1、使用el-upload上传文件1.1代码演示1.2回显列表2、formdata传集合List到Springboot后台前言 在使用el-upload上传文件,会遇到必须使用:action="upload_url"远端链接的问题,本章我们讲解怎样不适用远端链接,通过上传获取到本地的file文件…

LPDDR6带宽预计将翻倍增长:应对低功耗挑战与AI时代能源需求激增

在当前科技发展的背景下,低能耗问题成为了业界关注的焦点。国际能源署(IEA)近期报告显示,日常的数字活动对电力消耗产生显著影响——每次Google搜索平均消耗0.3瓦时(Wh),而向OpenAI的ChatGPT提出的每一次请求则消耗2.9…

C++【缺省参数|函数重载|引用】

目录 1 缺省参数 1.1 全缺省 1.2 半缺省 注意 1.3 应用 2 函数重载 函数重载的概念 1、参数类型不同 2、参数个数不同 3、参数类型顺序不同 3 引用 3.1 引用概念 3.2 引用特性 3.3 常引用 3.4 使用场景 3.5 传值、传引用效率比较 3.6 引用和指针的区别 1 缺…

乡村振兴的乡村产业创新发展:培育乡村新兴产业,打造乡村产业新名片,促进乡村经济多元化发展

目录 一、引言 二、乡村产业创新发展的必要性 (一)适应新时代发展要求 (二)满足消费升级需求 (三)促进农民增收致富 三、培育乡村新兴产业策略 (一)加强科技创新引领 &#…

【已解决】使用token登录机制,token获取不到,blog_list.html界面加载不出来

Bug产生 今天使用token完成用户登录信息的存储的时候被卡了大半天。 因为登录的功能写的已经很多了,所以今天就没有写一点验一点,而是在写完获取博客列表功功能,验证完它的后端后,了解完令牌的基本使用以及Jwt的基本使用方式——…

onenav一为导航主题4.05开心版 可保存授权

一款大多数导航网站使用且功能非常全面的导航主题,有能力的情况下还是劝大家支持正版。 演示站:onenav一为导航主题演示站 后台演示 | 演示后台:登录 - onenav一为导航主题演示站 后台演示 后台测试账号获取:演示站后台账号获取…

【使用ChatGPT构建应用程序】应用程序开发概述:1. 管理秘钥、2. 数据安全、3. 与应用程序解耦、4. 注意提示语的注入攻击

文章目录 一. 首先注意的两个方面1. 管理API密钥1.1. 用户提供API密钥1.2. 你自己提供API密钥 2. 数据安全和数据隐私 二. 软件架构设计原则:与应用程序解耦三. 注意LLM提示语的注入攻击1. 分析输入和输出2. 监控和审计3. 其他要注意的注入情况 在了解了ChatGPT的文…

C++:类和对象

一、前言 C是面向对象的语言,本文将通过上、中、下三大部分,带你深入了解类与对象。 目录 一、前言 二、部分:上 1.面向过程和面向对象初步认识 2.类的引入 3.类的定义 4.类的访问限定符及封装 5.类的作用域 6.类的实例化 7.类的…

与MySQL的初相遇

🌎初识MySQL 注:本文SQL语句只为了验证猜想,不会也不要紧。 文章目录: MySql开端 认识数据库       什么是数据库       主流数据库       MySQL的本质 MySQL基础使用       连接mysql服务器     …

LangChain入门开发教程(一):Model I/O

官方文档:https://python.langchain.com/docs/get_started/introduction/ LangChain是一个能够利用大语言模型(LLM,Large Language Model)能力进行快速应用开发的框架: 高度抽象的组件,可以像搭积木一样&a…

(函数)判断素数(C语言)

一、运行结果&#xff1b; 二、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>//声明素数判断函数&#xff1b; void prime(int number);int main() {//初始化变量值&#xff1b;int number 0;//获取用户输入的数据&#xff1b;printf(&quo…

zynq/zynqMP启动模式总结:FLASH+emmc启动/petalinux烧写速度最快的启动方式

因客户要求zynq开发板只有FLASH和emmc&#xff0c;然而还得在petalinux进行开发系统&#xff0c;因FLASH大小有限&#xff0c;所以没办法把内核和根文件地址全部存储到FLASH中&#xff0c;于是想配合emmc进行启动&#xff0c;但是在网上搜索的大多都是只把根文件系统放到了emmc…

【文献阅读】极端事件、经济不确定性、原油期货价格泡沫投机

Extreme events, economic uncertainty and speculation on occurrences of price bubbles in crude oil futures 极端事件、经济不确定性、原油期货价格泡沫投机 本文考察了极端事件、经济不确定性和投机行为对原油期货价格泡沫的影响。为了更好地预测和估计原油期货的正/负价…

创建特定结构的二维数组:技巧与示例

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言&#xff1a;二维数组的奇妙世界 二、方法一&#xff1a;直接初始化 1. 初始化一个…