6.S081的Lab学习——Lab5: xv6 lazy page allocation

文章目录

  • 前言
  • 一、Eliminate allocation from sbrk() (easy)
    • 解析:
  • 二、Lazy allocation (moderate)
    • 解析:
  • 三、Lazytests and Usertests (moderate)
    • 解析:
  • 总结


前言

一个本硕双非的小菜鸡,备战24年秋招。打算尝试6.S081,将它的Lab逐一实现,并记录期间心酸历程。
代码下载

官方网站:6.S081官方网站

安装方式:
通过 APT 安装 (Debian/Ubuntu)
确保你的 debian 版本运行的是 “bullseye” 或 “sid”(在 ubuntu 上,这可以通过运行 cat /etc/debian_version 来检查),然后运行:

sudo apt-get install git build-essential gdb-multiarch qemu-system-misc gcc-riscv64-linux-gnu binutils-riscv64-linux-gnu 

(“buster”上的 QEMU 版本太旧了,所以你必须单独获取。

qemu-system-misc 修复
此时此刻,似乎软件包 qemu-system-misc 收到了一个更新,该更新破坏了它与我们内核的兼容性。如果运行 make qemu 并且脚本在 qemu-system-riscv64 -machine virt -bios none -kernel/kernel -m 128M -smp 3 -nographic -drive file=fs.img,if=none,format=raw,id=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.0 之后出现挂起

则需要卸载该软件包并安装旧版本:

  $ sudo apt-get remove qemu-system-misc
  $ sudo apt-get install qemu-system-misc=1:4.2-3ubuntu6

在 Arch 上安装

sudo pacman -S riscv64-linux-gnu-binutils riscv64-linux-gnu-gcc riscv64-linux-gnu-gdb qemu-arch-extra

测试您的安装
若要测试安装,应能够检查以下内容:

$ riscv64-unknown-elf-gcc --version
riscv64-unknown-elf-gcc (GCC) 10.1.0
...

$ qemu-system-riscv64 --version
QEMU emulator version 5.1.0

您还应该能够编译并运行 xv6: 要退出 qemu,请键入:Ctrl-a x。

# in the xv6 directory
$ make qemu
# ... lots of output ...
init: starting sh
$

一、Eliminate allocation from sbrk() (easy)

你的首项任务是删除sbrk(n)系统调用中的页面分配代码(位于sysproc.c中的函数sys_sbrk())。sbrk(n)系统调用将进程的内存大小增加n个字节,然后返回新分配区域的开始部分(即旧的大小)。新的sbrk(n)应该只将进程的大小(myproc()->sz)增加n,然后返回旧的大小。它不应该分配内存——因此您应该删除对growproc()的调用(但是您仍然需要增加进程的大小!)。

试着猜猜这个修改的结果是什么:将会破坏什么?

进行此修改,启动xv6,并在shell中键入echo hi。你应该看到这样的输出:

init: starting sh
$ echo hi
usertrap(): unexpected scause 0x000000000000000f pid=3
            sepc=0x0000000000001258 stval=0x0000000000004008
va=0x0000000000004000 pte=0x0000000000000000
panic: uvmunmap: not mapped

“usertrap(): …”这条消息来自trap.c中的用户陷阱处理程序;它捕获了一个不知道如何处理的异常。请确保您了解发生此页面错误的原因。“stval=0x0…04008”表示导致页面错误的虚拟地址是0x4008。

切换分支执行操作

git stash
git fetch
git checkout lazy
make clean

解析:

非常简单,删除sbrk(n)系统调用中的页面分配代码,并且新的sbrk(n)应该只将进程的大小(myproc()->sz)增加n,然后返回旧的大小。按照说得来就行。


uint64
sys_sbrk(void)
{
  int addr;
  int n;

  if(argint(0, &n) < 0)
    return -1;
  addr = myproc()->sz;
  /*if(growproc(n) < 0)
    return -1;*/
  myproc()->sz += n;
  return addr;
}

输出结果正常:
在这里插入图片描述
对照下面的图,显示是usertrap里面的缺页中断
在这里插入图片描述

二、Lazy allocation (moderate)

修改trap.c中的代码以响应来自用户空间的页面错误,方法是新分配一个物理页面并映射到发生错误的地址,然后返回到用户空间,让进程继续执行。您应该在生成“usertrap(): …”消息的printf调用之前添加代码。你可以修改任何其他xv6内核代码,以使echo hi正常工作。

提示:

  1. 你可以在usertrap()中查看r_scause()的返回值是否为13或15来判断该错误是否为页面错误
  2. stval寄存器中保存了造成页面错误的虚拟地址,你可以通过r_stval()读取
  3. 参考vm.c中的uvmalloc()中的代码,那是一个sbrk()通过growproc()调用的函数。你将需要对kalloc()和mappages()进行调用
  4. 使用PGROUNDDOWN(va)将出错的虚拟地址向下舍入到页面边界
  5. 当前uvmunmap()会导致系统panic崩溃;请修改程序保证正常运行
  6. 如果内核崩溃,请在kernel/kernel.asm中查看sepc
  7. 使用pgtbl lab的vmprint函数打印页表的内容
  8. 如果您看到错误“incomplete type proc”,请include“spinlock.h”然后是“proc.h”。

如果一切正常,你的lazy allocation应该使echo hi正常运行。您应该至少有一个页面错误(因为延迟分配),也许有两个。

解析:

首先按照提示,要修改usertrap()(kernel/trap.c)函数,查看r_scause()的返回值是否为13或15来判断该错误是否为页面错误。

根据提示,先查看uvmalloc()中的代码。

// Allocate PTEs and physical memory to grow process from oldsz to
// newsz, which need not be page aligned.  Returns new size or 0 on error.
uint64
uvmalloc(pagetable_t pagetable, uint64 oldsz, uint64 newsz)
{
  char *mem;
  uint64 a;

  if(newsz < oldsz)
    return oldsz;

  //它将oldsz向上舍入到最近的页面边界。这是因为内存通常按页面大小进行分配
  oldsz = PGROUNDUP(oldsz);
  for(a = oldsz; a < newsz; a += PGSIZE){
    //使用kalloc函数分配一个页面大小的物理内存,并返回其地址
    mem = kalloc();
    if(mem == 0){
      uvmdealloc(pagetable, a, oldsz);
      return 0;
    }
    memset(mem, 0, PGSIZE);
    //使用mappages函数将物理内存页面映射到虚拟地址空间中
    if(mappages(pagetable, a, PGSIZE, (uint64)mem, PTE_W|PTE_X|PTE_R|PTE_U) != 0){
      kfree(mem);
      uvmdealloc(pagetable, a, oldsz);
      return 0;
    }
  }
  return newsz;
}

先判断发生错误的虚拟地址(r_stval()读取)是否位于栈空间之上,进程大小(虚拟地址从0开始,进程大小表征了进程的最高虚拟地址)之下,然后分配物理内存并添加映射

......
else if (r_scause() == 13 || r_scause() == 15) {
    uint64 virtual_address = r_stval();
    char *mem;
    if(PGROUNDUP(p->trapframe->sp) > virtual_address && virtual_address >= p->sz)
    	return;
    mem = kalloc();
    virtual_address = PGROUNDDOWN(virtual_address);
    if(mem == 0){
      return;
    }
    memset(mem, 0, PGSIZE);
    if(mappages(p->pagetable, virtual_address, PGSIZE, (uint64)mem, PTE_W|PTE_X|PTE_R|PTE_U) != 0) {
      kfree(mem);
      p->killed = 1;
    }
  } 
......

修改uvmunmap()(kernel/vm.c),之所以修改这部分代码是因为lazy allocation中首先并未实际分配内存,所以当解除映射关系的时候对于这部分内存要略过,而不是使系统崩溃,这部分在课程视频中已经解答。

......
    if((*pte & PTE_V) == 0)
      //panic("uvmunmap: not mapped");
      continue;
......

最后也是成功输出
在这里插入图片描述

三、Lazytests and Usertests (moderate)

我们为您提供了lazytests,这是一个xv6用户程序,它测试一些可能会给您的惰性内存分配器带来压力的特定情况。修改内核代码,使所有lazytests和usertests都通过。

  1. 处理sbrk()参数为负的情况。
  2. 如果某个进程在高于sbrk()分配的任何虚拟内存地址上出现页错误,则终止该进程。
  3. 在fork()中正确处理父到子内存拷贝。
  4. 处理这种情形:进程从sbrk()向系统调用(如read或write)传递有效地址,但尚未分配该地址的内存。
  5. 正确处理内存不足:如果在页面错误处理程序中执行kalloc()失败,则终止当前进程。
  6. 处理用户栈下面的无效页面上发生的错误。

如果内核通过lazytests和usertests,那么您的解决方案是可以接受的:

$ lazytests
lazytests starting
running test lazy alloc
test lazy alloc: OK
running test lazy unmap...
usertrap(): ...
test lazy unmap: OK
running test out of memory
usertrap(): ...
test out of memory: OK
ALL TESTS PASSED
$ usertests
...
ALL TESTS PASSED
$

解析:

处理sbrk()参数为负数的情况,参考之前sbrk()调用的growproc()程序,如果为负数,就调用uvmdealloc()函数,但需要限制缩减后的内存空间不能小于0

// Grow or shrink user memory by n bytes.
// Return 0 on success, -1 on failure.
int
growproc(int n)
{
  //定义了一个无符号整数 sz 来存储进程的当前大小
  uint sz;
  //并声明了一个指向 proc 结构体的指针 p用于获取当前进程的指针
  struct proc *p = myproc();
  //从 p 指向的 proc 结构体中获取当前进程的大小,并将其存储在 sz 中
  sz = p->sz;
  //如果 n 大于 0,则尝试增加内存。使用 uvmalloc 函数来增加从 sz 到 sz + n 的内存。如果 uvmalloc 返回 0,表示内存分配失败,函数返回 -1
  if(n > 0){
    if((sz = uvmalloc(p->pagetable, sz, sz + n)) == 0) {
      return -1;
    }
  } else if(n < 0){
    //如果 n 小于 0,则尝试减少内存。使用 uvmdealloc 函数来释放从 sz 到 sz + n 的内存。注意这里即使 uvmdealloc 可能失败(尽管函数签名没有显示返回值或错误处理),该函数也不会检查返回值或返回错误
    sz = uvmdealloc(p->pagetable, sz, sz + n);
  }
  p->sz = sz;
  return 0;
}

修改之后的sys_sbrk:

uint64
sys_sbrk(void)
{
  int addr;
  int n;

  if(argint(0, &n) < 0)
    return -1;
  addr = myproc()->sz;
  
  uint sz;
  struct proc *p = myproc();

  sz = p->sz;
  if(n > 0){
    p->sz += n;
  } else if(sz + (n > 0){
    sz = uvmdealloc(p->pagetable, sz, sz + n);
    p->sz = sz;
  } else {
    return -1;
  }
  
  return addr;
}

正确处理fork的内存拷贝:fork调用了uvmcopy进行内存拷贝,现在让其直接进入下一页,而不是报错,所以修改uvmcopy如下

    if((pte = walk(old, i, 0)) == 0)
      //panic("uvmcopy: pte should exist");
      continue;
    if((*pte & PTE_V) == 0)
      //panic("uvmcopy: page not present");
      continue;

还需要继续修改uvmunmap,同样的问题,同样的方式

    if((pte = walk(pagetable, a, 0)) == 0)
      //panic("uvmunmap: walk");
      continue;
    if((*pte & PTE_V) == 0)
      //panic("uvmunmap: not mapped");
      continue;

以上部分搞完之后我就去测试了,然后就g了。。。
看了大佬们的讲解,应该是write错了。
因为我们现在采用的是懒分配,写的时候由于此时传入的地址还未实际分配(因为还没映射,只分配了虚拟地址),就不能走到上文usertrap中判断scause是13或15后进行内存分配的代码。
解决办法我看到了两种:
一种是在walkaddr寻找物理地址时,如果发现虚拟地址没有映射,就给它实际分配一下。
另外一种是系统通过argaddr函数从寄存器中读取地址时添加物理内存分配的代码。
都可以解决,也没啥区别。

我采用在walkaddr函数中更改。代码总体跟之前的uvmalloc没差太多,毕竟是一个功能的。

uint64
sys_sigalarm(void) {
  struct proc *p;
  p = myproc();
  argint(0, &p->alarm_interval);
  argaddr(1, &p->handler);
  p->ticks_count = 0;
  return 0;
}

uint64
sys_sigreturn(void) {
    return 0;
}

最后在trap.c中的usertrap()中处理.
增加用户报警函数的地址可能是0的判断。当进程的报警间隔期满时(也就是两次报警间的滴答计数达到了报警间隔),用户进程执行处理程序函数。

  // give up the CPU if this is a timer interrupt.
  if(which_dev == 2) {
    if (p->alarm_interval != 0) {
      p->ticks_count++;
      if (p->ticks_count == p->alarm_interval) {
        p->ticks_count = 0;
        p->trapframe->epc = p->handler;
      }
    }
  }
  yield();

没有什么问题
在这里插入图片描述

题目二中要解决的主要问题是寄存器保存恢复和防止重复执行的问题。
要在usertrap中再次保存用户寄存器,当handler调用sigreturn时将其恢复,并且要防止在handler执行过程中重复调用。
再在struct proc中新增两个字段

int is_alarming;                    // 是否正在执行告警处理函数
struct trapframe* alarm_trapframe;  // 告警陷阱帧

同时记得在allocproc中将它们初始化为0,并在freeproc中也设为0

  // 增加不是修改
  // 进程初始化,这里主要是防止申请不成功,那就学着已有的代码对进程进行销毁
  if((p->alarm_trapframe = (struct trapframe *)kalloc()) == 0){
    freeproc(p);
    release(&p->lock);
    return 0;
  }
  p->pid = allocpid();
  p->ticks_count = 0;
  p->alarm_interval = 0;
  p->handler = 0;
  p->is_alarming = 0;

  //增加不是修改
  if(p->alarm_trapframe)
    kfree((void*)p->alarm_trapframe);
  p->trapframe = 0;
  p->is_alarming = 0;

更改usertrap函数,保存进程陷阱帧p->trapframe到p->alarm_trapframe

  // give up the CPU if this is a timer interrupt.
  if(which_dev == 2) {
    if (p->alarm_interval != 0) {
      p->ticks_count++;
      if (p->ticks_count >= p->alarm_interval && p->is_alarming == 0) {
        memmove(p->alarm_trapframe, p->trapframe, sizeof(struct trapframe));
        p->is_alarming == 1;
        p->ticks_count = 0;
        p->trapframe->epc = (uint64)p->handler;
      }
    }
  }
  yield();

  usertrapret();
}

最后修改sys_sigreturn函数,恢复陷阱帧。

uint64
sys_sigreturn(void) {
  struct proc *p;
  p = myproc();
  memmove(p->trapframe, p->alarm_trapframe, sizeof(struct trapframe));
  p->is_alarming = 0;
  return 0;
}

在这里插入图片描述

总结

这个实验成功的带着我们实现了回溯,中断的处理过程并如何恢复初始状态。从系统调用中梳理中断的全流程。收获颇丰。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/661326.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

HTTP Digest Access Authentication Schema

HTTP Digest Access Authentication Schema 背景介绍ChallengeResponse摘要计算流程总结参考 背景 本文内容大多基于网上其他参考文章及资料整理后所得&#xff0c;并非原创&#xff0c;目的是为了需要时方便查看。 介绍 HTTP Digest Access Authentication Schema&#xff…

STL库--stack

目录 stack的定义 stack容器内元素的访问 stack常用函数实例解析 stack的常见用途 stack的定义 其定义的写法和其他STL容器相同&#xff0c;typename可以任意基本类型或容器&#xff1a; stack<typename> name; stack容器内元素的访问 由于栈本身就是一种后进先出…

Java Class类简介

一、类图&#xff1a; 二、基本介绍&#xff1a; 1. Class也是类&#xff0c;因此也继承了Object类。 2. Class类的对象不是new出来的&#xff0c;是系统创建的。 类加载器ClassLoader有个方法LoadClass()&#xff0c;将某个类对应的Class对象生成在堆中。 通过调试可以发现&am…

代码随想录-Day23

669. 修剪二叉搜索树 方法一&#xff1a;递归 class Solution {public TreeNode trimBST(TreeNode root, int low, int high) {if (root null) {return null;}if (root.val < low) {return trimBST(root.right, low, high);} else if (root.val > high) {return trimBS…

python基础-数据结构-leetcode刷题必看-queue---队列-python的底层构建

文章目录 队列双端队列 deque底层存储deque接口1. __init__(self, iterable: Iterable[_T], maxlen: int | None None) -> None2. append(self, __x: _T) -> None3. appendleft(self, __x: _T) -> None4. copy(self) -> Self5. count(self, __x: _T) -> int6. …

GoFly框架快速新增接口/上手写代码

拿到一个新框架大家可能无从下手&#xff0c;因为你对框架设计思路、结构不了解&#xff0c;从而产生恐惧&#xff0c;所以我们框架是通过简单可视化界面安装&#xff0c;安装后即可看到效果&#xff0c;然后点击先点点看各个功能&#xff0c;看现有的功能是怎么写的&#xff0…

怎样清理Mac存储空间 苹果电脑内存不够用怎么办 苹果电脑内存满了怎么清理

在使用 Mac 电脑的过程中&#xff0c;用户经常会遇到磁盘空间不足的困扰&#xff0c;这时候就需要寻找有效的方法来清理苹果电脑内存了。 清理Mac存储空间可以通过多种方法进行&#xff0c;以确保你的Mac能够高效运行并释放宝贵的存储空间。以下是一些有效的清理和优化方法&am…

swift 自定义扫码功能

使用功能​​​​​​​ 1. 调用扫码功能&#xff08;扫描二维码/条形码、图片识别二维码/条形码、生成二维码/条形码&#xff09; 2. 自定义扫码界面UI&#xff08;继承式自定义修改样式&#xff0c;完全自定义调用封装组件&#xff09; 3. 生成二维码/条形码 源码地址&#x…

Parquet使用指南:一个超越CSV、提升数据处理效率的存储格式

前言 在大数据时代&#xff0c;数据存储和处理的效率越来越重要。同时&#xff0c;我们在工作中处理的数据也越来越多&#xff0c;从excel格式到csv格式&#xff0c;从文件文档传输到直接从数据库提取&#xff0c;数据单位也从K到M再到G。 当数据量达到了G以上&#xff0c;几…

串口通信问题排查总结

串口通信问题排查 排查原则&#xff1a; 软件从发送处理到接收处理&#xff0c;核查驱动、控制及发送接收数据是否正常。硬件从发送到接收&#xff0c;针对信号经过的各段&#xff0c;分段核对信号是否正常。示波器、逻辑分析仪。用万用表、示波器、逻辑分析仪等工具&#xf…

Hadoop3:MapReduce之简介、WordCount案例源码阅读、简单功能开发

一、概念 MapReduce是一个 分布式运算程序 的编程框架&#xff0c;是用户开发“基于 Hadoop的数据分析 应用”的核心框架。 MapReduce核心功能是将 用户编写的业务逻辑代码 和 自带默认组件 整合成一个完整的 分布式运算程序 &#xff0c;并发运行在一个 Hadoop集群上。 1、M…

【高频】redis快的原因

相关问题&#xff1a; 1.为什么Redis能够如此快速地进行数据存储和检索&#xff1f; 2.Redis作为内存数据库,其内存存储有什么优势吗? 3.Redis的网络模型有何特点,如何帮助提升性能? 一、问题回答 Redis使用了内存数据结构&#xff0c;例如字符串、哈希表、列表、集合、有…

pycharm中,出现SyntaxError: Non-ASCII character ‘\xe4‘ in file... 的问题以及解决方法

文章目录 一、问题描述二、解决方法 一、问题描述 在pycharm中&#xff0c;使用python中编写中文字符时&#xff0c;会提示如下错误信息&#xff1a; SyntaxError: Non-ASCII character \xe4 in file ...... on line 8, but no encoding declared; see http://python.org/dev…

TypeScript-初识

TypeScript 是具有类型语法的JavaScript&#xff0c;是一门强类型的编程语言 变量不能做随意类型赋值 好处&#xff1a; 1️⃣ 静态类型检查&#xff0c;提前发现代码错误 function arrToStr(arr: Array<string>){return arr.join() } arrToStr(123) // 类型“stri…

网页版应用授权的核心难点

Web应用的出现 随着数字化时代发展&#xff0c;越来越多的企业开始关注工业软件上云。这种趋势不仅满足了企业对于提高生产效率、降低运维成本的需求&#xff0c;还帮助企业更好地应对市场竞争、实现产业升级和智能制造。 在软件上云的过程中&#xff0c;会产生新产品形态和新…

2024 京麟ctf -MazeCodeV1

文章目录 检查代码思路一个字节的指令注意附上S1uM4i佬们的exp https://www.ctfiot.com/184181.html 检查 代码 __int64 __fastcall check_solve(char *a1) {__int64 result; // rax__int64 v2; // rax__int64 index_step; // rax__int64 v4; // rax__int64 v5; // rax__int64…

贪心(临项交换)+01背包,蓝桥云课 搬砖

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 0搬砖 - 蓝桥云课 (lanqiao.cn) 二、解题报告 1、思路分析 将物品按照w[i] v[i]升序排序然后跑01背包就是答案 下面证明&#xff1a;&#xff08;不要问怎么想到的&#xff0c;做题多了就能想到&#xff…

一致性hash算法原理图和负载均衡原理-urlhash与least_conn案例

一. 一致性hash算法原理图 4台服务器计算hash值图解 减少一台服务3台服务器计算hash值图解 增加一台服务器5台服务器计算hash值图解 二. 负载均衡原理-urlhash与least_conn 2.1.urlhash案例 # urlhash upstream tomcats {hash $requ

5分钟教你APP变现,让商业浪潮为你助力!

在这个数字时代&#xff0c;几乎每个人都有一个或多个应用程序&#xff08;APP&#xff09;的想法&#xff0c;它们可能是为了解决特定问题&#xff0c;提供娱乐或简化日常任务。然而&#xff0c;许多开发者面临的最大挑战之一是如何将这些创意转化为盈利的商业模式。本文将探讨…

idea+tomcat+mysql 从零开始部署Javaweb项目(保姆级别)

文章目录 新建一个项目添加web支持配置tomcat优化tomcat的部署运行tomcatidea数据库连接java连接数据库 新建一个项目 new project&#xff1b;Java&#xff1b;选择jdk的版本&#xff1b;next&#xff1b;next&#xff1b;填写项目名字&#xff0c;选择保存的路径&#xff1b;…