Stable Diffusion WebUI详细使用指南

Stable Diffusion WebUI(AUTOMATIC1111,简称A1111)是一个为高级用户设计的图形用户界面(GUI),它提供了丰富的功能和灵活性,以满足复杂和高级的图像生成需求。由于其强大的功能和社区的活跃参与,A1111成为了Stable Diffusion模型事实上的标准GUI,并且是新功能和实验性工具的首选发布平台。

  • 本指南可以作为一步步跟随的教程,帮助你从基础开始学习如何使用A1111。通过实际操作的例子,你可以逐步了解每个功能的作用和配置方法。
  • 当你已经熟悉了基本操作后,你可以将这个指南作为快速参考手册。在需要使用特定功能或解决特定问题时,可以快速查阅相关内容。
  • 在学习过程中,示例是非常重要的。通过观察和实践示例,你可以更清晰地理解每个设置的效果和用途。

下载并安装Stable Diffusion WebUI

这个就不多讲了,大家登上github,拷贝下来直接启动就行了。但是确保你有大于8G的显存,否则在使用中会非常慢,并且可能会出现某些功能无法使用的问题。

txt2img

当您首次启动GUI时,您会看到txt2img标签。这个标签执行了Stable Diffusion的最基本功能:将文本提示转换成图像。

基本用法

如果你是第一次使用webUI,那么下面这几个参数是你一定需要注意的:

image-20240411001500594

首先是checkpoint,这个模型决定了你图片的基础风格。

你可以在提示词部分,输入你希望生成的图片描述。在反向提示词部分,可以输入你不想在图片上看到的内容。

宽度和高度:输出图像的尺寸。当使用v1模型时,您应该将至少一边设置为512像素。例如,将宽度设置为512,高度设置为768,以获得一个2:3的纵向图像。

批处理大小:每次生成的图像数量。在测试提示时,您至少想生成几个图像,因为每个图像都会有所不同。最后,点击生成按钮。稍等片刻,您就会得到您的图像!

image-20240411001837962

图像生成参数

在上面生成图像的底部,我们可以看到一些关于图片生成的具体信息,具体到上面的例子,我们得到了下面的图片生成参数:

Prompt: a girl,0lg4kury,
Negative prompt: (unhealthy-deformed-joints:2),(unhealthy-hands:2),easynegative,ng_deepnegative_v1_75t,(worst quality:2),(low quality:2),(normal quality:2),lowres,bad anatomy,badhandv4,((extra limbs)),((extra legs)),((fused legs)),((extra arms)),((fused arms)),normal quality,((monochrome)),((grayscale)),((watermark)),uneven eyes,lazy eye,bad-hands-5,(((mutated hand))),
Steps: 20,

Sampler: DPM++ 2M Karras,

CFG scale: 7,

Seed: 1650696303,

Size: 512x512,

Clip skip: 2

采样步骤:去噪过程的采样步骤数。步数越多越好,但也需要更长时间。25步适用于大多数情况。

宽度和高度:输出图像的尺寸。对于v1模型,您应该至少将一侧设置为512像素。例如,将宽度设置为512,高度设置为768,以获得一个2:3的竖向图像。使用v2-768px模型时,应至少将一侧设置为768。

批次计数:运行图像生成管道的次数。

批次大小:每次运行管道生成的图像数量。生成的图像总数等于批次计数乘以批次大小。通常您会更改批次大小,因为这样更快。只有在遇到内存问题时才会更改批次计数。

**CFG scale:分类器无指导比例是一个参数,用于控制模型应该多大程度上遵循您的提示。

1 - 大部分忽略您的提示。

3 - 更具创造性。

7 - 在遵循提示和自由之间取得良好的平衡。

15 - 更加遵循提示。

30 - 严格遵循提示。

seed

seed:是在潜在空间中用于生成初始随机张量的种子值。从实际情况来看,它可以控制图像的内容。

每个生成的图像都有自己的种子值。如果在webUI中把seed设置为-1,它将使用一个随机的种子值。固定种子的一个常见原因是为了固定图像的内容并调整提示。比如说,我使用以下提示生成了一张图像。

a girl in the photo,0lg4kury,dresses,in the city,

image-20240411002357160

我觉得这张照片不错,但是我还想给她添加点东西,比如手镯。那么我们要做的就是在图片下面找到它的seed,然后规定这个值,再在prompt中添加bracelet:

image-20240411002533004

可以看到它的seed值是1721867153, 我们把这个值复制到种子值输入框中。或者使用回收按钮来复制种子值。

image-20240411002624820

现在在提示中添加术语“手镯”

a girl in the photo,0lg4kury,dresses,in the city,bracelet

我们会得到下面的图片:

image-20240411002752895

人物和场景大体上是没有变化的,只不过这次给人物多加了一个手镯。

extra seed

勾选 extra 选项将显示额外种子菜单。

image-20240411003015088

这个extra seed是做什么用的呢?

在上面界面上,你可以看到有两个非常重要的变量,分别是Variation seed和Varation strength。

Variation seed: 你想要使用的额外种子数值。

Varation strength: 表示的是在 种子变化种子 之间的插值程度。将其设置为0表示使用 种子 的数值。将其设置为1使用 变化种子 数值。

可能朋友们还是不明白这个参数到底是做什么,那么我们来举个例子。

上面我们已经生成了一张图片了,他的seed是1721867153,那么我们修改这个seed,改成1721867155,再生成一张图片:

image-20240411003340344

因为seed改变了,所以这两幅图片的差距有点大了。

extra seed的作用就是可以给我们一个合并这两个图的方法。

你想要生成这两张图片的混合图像。你将种子设为1721867153,变化种子设为1721867155,并调整变化强度在0和1之间。在下面的实验中,变化强度允许你在两个种子之间产生图像内容的过渡。当变化强度从0增加到1时,女孩的姿势和背景逐渐改变。

image-20240411004045660

即使使用相同的种子,如果更改图像大小,图像也会发生显著变化。

还是这个seed:1721867153。 如果我现在把长宽变成:512x768,看看生成的图片:

image-20240411004226673

人脸修复

SD webUI提供了一个人脸修复的选项,可以专门用于修复人脸上的缺陷。以下是一些示例,展示了修复前后的效果。

修复前:

image-20240411095214945

修复后:

image-20240411095709393

对比看看,效果还是很明显的。

等等,有同学会问了,restore face? 有这个选项吗? 我怎么没看到?

别急,在使用之前你需要到settings–> user interface ->Quicksettings list 中把face_restoration加上去:

image-20240411102706333

加完之后,重启UI,回到txt2img选项卡。勾选Restore Faces。人脸修复模型将应用于您生成的每张图片。

image-20240411102755963

如果发现应用影响了人脸上的风格,您可以选择关闭人脸修复。

Tiling

您可以使用Stable Diffusion WebUI创建类似壁纸的重复图案。

要启用tiling,我们还是在settings–> user interface ->Quicksettings list 中把tiling加上去:

image-20240411103132254

现在我们在text2img选项中就可以看到tiling这个选项了,勾选上它,然后画一下花,看看什么效果:

image-20240411103252519

可以看到这幅画是一个完美的平铺图片,你可以从上下左右任何方向拼接这个图片,都可以得到完美的图像。

当然,生成的图片可以是任何东西,比如无尽的阶梯:

image-20240411103603145

快来发挥你的创意吧,创造你想要的图片吧。

高清修复Hires.fix.

高分辨率修复(High-Resolution Upscaling)是一个在图像生成领域常见的概念,特别是在使用稳定扩散模型时。这个选项的目的是为了克服模型原生输出分辨率的限制,从而生成更大尺寸、更高质量的图像。

稳定扩散模型默认的输出分辨率通常是512像素(对于某些v2型号是768像素)。这个限制是由模型的设计和训练数据集决定的。对于一些应用场景,如打印、大尺寸展示或者高清屏幕显示,这样的分辨率可能不够用。

为什么不直接设置更高的原生分辨率?直接提高模型的原生输出分辨率(例如,将宽度和高度设置为1024像素)可能会导致一些问题,比如构图失真或者生成异常图像(例如,图像中出现多余的头或其他元素)。这是因为模型在训练过程中学习到了特定的输出尺寸,直接改变这个尺寸可能会导致模型无法正确地映射图像特征到新的分辨率上。

我们先看下hires.fix的一些参数设置:

image-20240411104136248

upscaler上采样器:上采样器是图像处理中用于放大图像的工具。有很多采样器可以选择。

其中latent是一种比较特殊的采样器,它在所谓的“潜在空间”中工作。潜在空间是一个数学概念,用于表示图像生成模型在生成图像之前所处的中间状态。这类上采样器在图像生成的采样步骤之后应用,即在模型已经根据文本提示生成了一个初步的图像表示后,再对其进行放大处理。潜在上采样器的选项通常包括各种基于数学和机器学习原理的方法,它们可以在不改变图像构图的情况下增加图像的尺寸。

高清步骤:仅适用于latent采样器。它指的是在放大潜在图像后进行的额外采样步骤的数量。更多的高清步骤意味着模型将有更多的机会细化图像的细节,可能产生更清晰、更高质量的图像。

去噪强度:仅适用于latent采样器。它控制了在执行高清采样步骤之前添加到潜在图像的噪声。添加一定量的噪声可以帮助模型更好地学习和恢复图像的细节。太低可能无法有效恢复细节,太高则可能导致图像中出现不必要的伪影或失真。

与传统的上采样器(如ESRGAN)相比,潜在上采样器不容易产生上采样伪影。这些伪影可能包括锐化过度、边缘不自然等现象,它们会影响图像的视觉质量。由于潜在上采样器是在图像生成的后期阶段工作,它能够保持与原始稳定扩散模型生成的图像的风格一致性。这意味着放大后的图像将更忠实于原始艺术风格和视觉特征。潜在上采样器在潜在空间中进行操作,这是一个中间表示,允许在不直接修改像素值的情况下对图像进行调整。这种方法可以更自然地处理图像的细节和结构。

但是潜在上采样器可能会在一定程度上改变原始图像。这种变化的程度取决于去噪强度的设置。较高的去噪强度可能会导致图像细节的丢失或模糊,而较低的去噪强度可能无法充分恢复图像的清晰度。

放大因子控制图像将放大多少倍。例如,将其设置为2会将一个512x768像素的图像放大为1024x1536像素。

图像操作按钮

在生成图像之后,你会发现一排按钮,用于对生成的图像执行各种功能。

image-20240411105557483

打开文件夹: 打开图像输出文件夹。可能并非适用于所有系统。

保存: 保存一张图像。点击后,按钮下方将显示下载链接。如果选择图像网格,将保存所有图像。

压缩: 压缩图像以便下载。

发送到img2img: 将选定的图像发送到img2img选项卡。

发送到修复: 将选定的图像发送到img2img选项卡中的修复选项。

发送到额外功能: 将选定的图像发送到额外功能选项卡。

Img2img

img2img的作用就是从一张图片来创建另外一张图片。

下面是基本的使用步骤:

步骤1:将基本图像拖放到img2img页面上的img2img标签中。

image-20240411105818196

步骤2:调整宽度或高度,使新图像具有相同的宽高比。您应该在图像画布中看到一个矩形框,表示宽高比。

步骤3:设置采样方法采样步数。通常使用DPM++ 2M Karass和20步。

步骤4:将批处理大小设置为4。一次多生成几张图可以挑选出你更满意的图片。

步骤5:为新图像编写提示。我将使用以下提示: a girl, sea。

步骤6:点击生成按钮生成图像。调整去噪强度并重复。不同的去噪强度可以生成不同的图片。

这是0.75的去噪强度:

image-20240411110158541

这是0.5的去噪强度

image-20240411110313855

可以看到0.75中人物已经发生了变化,但是在0.5中,人物基本上是保持不变的,同时我们还把背景换成了大海。

img2img页面里面的许多设置与txt2img是一致的。但是添加了一些新的选项:

Resize mode:如果新图像的宽高比与输入图像不同,有几种方法可以解决差异。现在我的原图是1024x1024,现在我想生成的图是768x1024。

  • Just resize将按比例缩放输入图像以适应新图像尺寸。它会拉伸或挤压图像。可以看到图片发生了挤压。

image-20240411111228157

  • Crop and resize将新图像画布适应到输入图像中。不适合的部分将被移除。原始图像的宽高比将被保留。

    image-20240411111304155

  • Resize and fill将输入图像适应到新图像画布中。多余的部分将填充为输入图像的平均颜色。宽高比将被保留。

    image-20240411111337585

  • Just resize (latent upscale)类似于Just resize,但缩放是在潜在空间中进行的。可以使用大于0.5的去噪强度以避免模糊图像。

去噪强度:控制图像的变化程度。如果设置为0,则不会发生任何变化。如果设置为1,则新图像与输入图像无关。0.75是一个不错的平衡点,你可以自行进行探索。

sketch

webUI中的sketch的作用是把素描图转换成真实的图片。

步骤1:转到img2img页面上的素描选项卡。

步骤2:将背景图像上传到画布上。

步骤3:写一个提示:a girl

步骤5:点击生成

image-20240411113017111

当然,素描的作用不限于此,我们还可以对图片进行创意的修改。

比如现在我有这样一幅图片:

image-20240411121424574

这是一个美女,我想把她的衣服变成一个V领的可以可以呢?

在sketch界面,我们选择吸管工具,吸取皮肤的颜色,然后涂抹到衣服上,点击生成,看看效果:

image-20240411121537788

Inpaint

img2img选项卡中,也许最常用的功能就是图像修复。

如果你在txt2img选项卡中生成了一张喜欢的图像,但出现了一点小瑕疵,你想要重新生成它。那么就可以把这张图片发送到Img2Img中。

假设你在txt2img选项卡中生成了下面的图像。然后你想给这个图片上加上个项链,那么可以在需要项链的位置添加上mask,提示词添加:necklace。点击生成看看效果:

image-20240411121959661

是不是很棒。你已经得到了你想要的效果。

当然,你可以通过调整降噪强度来观察不同数值对最后结果的变化。

在修复图像中进行缩放和平移

在修复图像的小区域时是否遇到困难?将鼠标悬停在左上角的信息图标上,即可查看缩放和平移的键盘快捷键。

image-20240411122224989

  • Alt + 滚轮 / Opt + 滚轮:进行放大和缩小。

  • Ctrl + 滚轮:调整画笔大小

  • R:重置缩放。

  • S:进入/退出全屏模式。

  • 按住F键并移动鼠标进行平移

这些快捷键在SketchInpaint Sketch中同样适用。

Inpaint sketch

Inpaint sketch结合了Inpaint和sketch功能。它让你可以像在sketch标签页中那样绘画,但只影响mask部分的区域。其他的区域保持不变。还是刚刚的例子:

image-20240411122812971

Inpaint upload

Inpaint upload功能允许您上传一个独立的蒙版文件,而不是手动绘制它。

Batch

使用批处理可以对多张图片进行修复或进行图像转换。

从图像中获取Promot

Interogate CLIP 按钮会对您上传到 img2img 选项卡的图像进行猜测,并生成提示。当您想生成一个不知道提示词的图像时,这将非常有用。

步骤 1:转到 img2img 页面

步骤 2:将图像上传到 img2img 选项卡

步骤 3:点击 Interrogate CLIP 按钮。

image-20240411123104368

在提示文本框中会显示这个图片的提示词。

Interrogate DeepBooru 按钮提供类似的功能,但它是专为动漫图像设计的。

图像放大

之前我们在文生图里面提到了有一个Hire.fix的功能可以实现图像放大的效果。

如果不是在文生图中,webUI也提供了一个非常有用的图像放大功能。你可以在Extras tab中找到它。

基本用法

按照以下步骤来放大图像。

步骤1:导航到extras页面。

步骤2:上传图像到图像画布。

步骤3:在调整大小标签下设置按比例缩放因子。新图像将会按比例放大。

步骤4:选择Upscaler 1。比较通用AI图像放大器是R-ESRGAN 4x+。

步骤5:点击生成。您应该在右边得到一张新的图像。

image-20240411123524703

图像放大器的种类

AUTOMATIC1111默认提供了一些图像放大器。

LanczosNearest是老式图像放大器。它们的功能不是很强大,但行为是可预测的。

ESRGANR-ESRGANScuNetSwinIR是AI图像放大器。它们可以通过创造内容来增加分辨率。

在extra中还有一个upscaler2,通过使用它,你可以结合两个图像放大器的效果。通过旁边的visibility滑块来控制混合的程度。

人脸修复

在放大过程中,你可以选择进行人脸修复。

有两个选项可供选择:GFPGAN 和CodeFormer。勾选他们中的任何一个就可以开启人脸修复功能了。

image-20240411155607444

PNG Info

如果AI图像是PNG格式,你可以尝试查看提示和其他设置信息是否写在了PNG元数据字段中。
首先,将图像保存到本地。
打开AUTOMATIC1111 WebUI。导航到PNG信息页面。

image-20240409232941011
将图像拖放到左侧的画布上。

上传了图像的PNG信息页面。
在右边你会找到关于提示词的有用信息。你还可以选择将提示和设置发送到txt2img、img2img、inpainting或者Extras页面进行放大。

安装扩展

image-20240411174357050

要在AUTOMATIC1111 Web UI中安装扩展,请按照以下步骤进行:

  1. 正常启动AUTOMATIC1111 Web UI。

  2. 转到扩展页面。

  3. 点击从URL安装选项卡。

  4. 扩展git仓库的URL字段中输入扩展的URL。

  5. 等待安装完成的确认消息。

  6. 重新启动AUTOMATIC1111。(提示:不要使用“应用并重启”按钮。有时不起作用。完全关闭并重新启动Stable Diffusion WebUI)

另外,在已安装的扩展列表中,你也可以点击check for updates来对扩展进行升级。

image-20240411174516408

总结

好了,基本上所有的web UI操作说明都在这里了。欢迎大家积极尝试。

点我查看更多精彩内容:www.flydean.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/659884.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

php 安装 swoole扩展

一 在swoole官网查询适配版本Swoole 文档 2. php环境为7.3下载 4.8 ​ wget https://pecl.php.net/get/swoole-4.6.6.tgztar -zxvf swoole-4.6.6.tgzcd swoole-4.6.6/usr/local/php7/bin/phpize​ ./configure --enable-openssl --enable-sockets --enable-mysqlnd --enabl…

Downie 4 for Mac:视频下载的新选择

对于Mac用户来说,想要轻松下载网上的视频内容,Downie 4无疑是一个绝佳的选择。这款专为Mac打造的视频下载工具,凭借其强大的功能和简洁的操作界面,让视频下载变得轻松又高效。 Downie 4支持从众多网站下载视频,包括各…

斯坦福报告解读4:图解有趣的推理基准(中)

《人工智能指数报告》由斯坦福大学、AI指数指导委员会及业内众多大佬Raymond Perrault、Erik Brynjolfsson 、James Manyika等人员和组织合著,该报告已被公认为最权威、最具信誉人工智能数据与洞察来源之一。 2024年版《人工智能指数报告》是迄今为止最为详尽的一份…

逍遥散人的“痛婚”,让《光夜》玩家悄悄破防了

网红博主的一场求婚,让《光与夜之恋》玩家破防了。 知名游戏博主逍遥散人发微博公布求婚成功,本来应该是一件喜事,但却因为求婚场景布满了《光与夜之恋》男主角之一陆沉的谷子(周边),遭到了“6推”&#x…

AI知识库和Agent简介及实现

AI知识库和Agent简介及实现 引言 随着人工智能的发展,大规模预训练模型(Large Pre-trained Models,简称大模型)成为了AI领域的重要研究方向。大模型通过大量的数据训练,能够在各种任务中展现出强大的性能。本文将重点…

出租房水电抄表系统的全面解析

1.系统定义和功能 出租房水电抄表系统是一种智能的可视化工具,关键用于解决房东在经营好几个出租房源时,对水电的使用量统计分析、收费和管理上的问题。通过自动化抄表、收费和通告,此系统减轻了房东的工作负担,提高了效率&#…

深入理解统计学中的最大值与最小值

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、统计学中的基础概念:最大值与最小值 1. 创建数组与数据导入 2. 求解整体数…

电表自动抄表系统:智能时代的能源管理新方式

1.界定和功能 电表自动抄表系统是一种现代化电力计量技术,它利用先进的通讯技术和互联网,完成了远程控制、实时电磁能数据采集和处理。系统的主要作用包含全自动载入电表数据信息、实时检测电力应用情况、出现异常报案及其形成详尽能源使用报告&#xf…

设置 SSH 主机 *** 正在初始化 VS Code 服务器

首先在server端 找到vscode server的服务端: ps -ef|grep node 然后kill掉 kill -9 pid 然后删除掉 .vscode-server 文件 rm -rf .vscode-server

Remix IDE 创建和部署第一个合约HelloWorld

Remix IDE 地址 https://remix.ethereum.org/ 流程步骤: 创建一个新文件 输入文件名保存 在文件资源管理器中,点击新建文件图标创建一个新文件,并给它命名。在 Remix 中,默认的文件扩展名是 .sol ,如果文件名没有…

亮相CCIG2024,合合信息文档解析技术破解大模型语料“饥荒”难题

近日,2024中国图象图形大会在古都西安盛大开幕。本届大会由中国图象图形学学会主办,空军军医大学、西安交通大学、西北工业大学承办,通过二十多场论坛、百余项成果,集中展示了生成式人工智能、大模型、机器学习、类脑计算等多个图…

容器Android:Waydroid

环境:intel PC,Ubuntu20.04 目标:在Ubuntu20.04上搭建waydroid Android容器系统1. 搭建weston环境 由于waydroid依赖wayland环境,当前Ubuntu20.04默认为X11,需要安装weston $sudo apt install weston $weston #进入W…

基于L1范数惩罚的稀疏正则化最小二乘心电信号降噪方法(Matlab R2021B)

L1范数正则化方法与Tikhonov正则化方法的最大差异在于采用L1范数正则化通常会得到一个稀疏向量,它的非零系数相对较少,而Tikhonov正则化方法的解通常具有所有的非零系数。即:L2范数正则化方法的解通常是非稀疏的,并且解的结果在一…

【Spring Cloud】分布式配置动态刷新

目录 问题解决方案1.使用Spring Boot Actuator监控接口【不推荐】流程图使用Spring Boot Actuator的步骤 2.Spring Cloud Bus第一种方案问题Spring Cloud Bus流程图Spring Cloud Bus实现客户端刷新的步骤开发准备实现1. 在config-server中添加依赖2.在config-server中添加配置a…

LeetCode --- 399周赛

题目列表 3162. 优质数对的总数 I 3163. 压缩字符串 III 3164. 优质数对的总数 II 3165. 不包含相邻元素的子序列的最大和 一、优质数对的总数I 这里由于数据范围比较小,我们可以直接暴力枚举,代码如下 class Solution { public:int numberOfPairs…

linnux上安装php zip(ZipArchive)、libzip扩展

安装顺序: 安装zip(ZipArchive),需要先安装libzip扩展 安装libzip,需要先安装cmake 按照cmake、libzip、zip的先后顺序安装 下面的命令都是Linux命令 1、安装cmake 确认是否已安装 cmake --version cmake官网 未安装…

渗透测试之信息收集篇

前言 信息收集的重要性 进行渗透测试之前,最重要的一步就是信息收集。 信息收集可以让渗透者选择合适和准确的渗透测试攻击方式,缩短渗透测试时间。 所谓知己知彼,百战不殆,我们越了解测试目标,测试的工作就越容易。 最后能否成功渗透进入目…

【MySQL数据库】 MySQL主从复制

MySQL主从复制 MySQL主从复制主从复制与读写分离的意义主从数据库实现同步(主从复制)三台mysql服务器搭建主从复制,要求不可以用root帐号同步,要求第三台服务器在测试过1、2的主从复制之后进行主从复制配置四台mysql服务器(m1,s1,…

如何遍历并处理不平衡的Python数据集

目录 一、引言 二、不平衡数据集的概念与影响 三、处理不平衡数据集的策略 重采样策略 集成学习方法 代价敏感学习 一分类方法 四、Python工具与库 五、案例分析与代码实现 案例一:使用imbalanced-learn库进行上采样 案例二:使用scikit-learn…

史上最全网络安全面试题+答案

1、什么是SQL注入攻击 前端代码未被解析被代入到数据库导致数据库报错 2、什么是XSS攻击 跨站脚本攻击 在网页中嵌入客户端恶意脚本,常用s语言,也会用其他脚本语言 属于客户端攻击,受害者是用户,网站管理员也属于用户&#xf…