【Linux】22. 线程控制

Linux线程控制

POSIX线程库

与线程有关的函数构成了一个完整的系列,绝大多数函数的名字都是以“pthread_”打头的
要使用这些函数库,要通过引入头文<pthread.h>
链接这些线程函数库时要使用编译器命令的“-lpthread”选项

线程创建

pthread_create函数

功能:创建一个新的线程
原型

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *
(*start_routine)(void*), void *arg);

参数
thread:返回线程ID
attr:设置线程的属性,attr为NULL表示使用默认属性
start_routine:是个函数地址,线程启动后要执行的函数
arg:传给线程启动函数的参数
返回值:成功返回0;失败返回错误码

错误检查:
传统的一些函数是,成功返回0,失败返回-1,并且对全局变量errno赋值以指示错误。
pthreads函数出错时不会设置全局变量errno(而大部分其他POSIX函数会这样做)。而是将错误代码通过返回值返回
pthreads同样也提供了线程内的errno变量,以支持其它使用errno的代码。对于pthreads函数的错误,
建议通过返回值业判定,因为读取返回值要比读取线程内的errno变量的开销更小

代码练习

#include <iostream>
#include <vector>
#include <unistd.h>

using namespace std;

// 这里的类当做结构体使用(方便理解)
class ThreadData
{
public:
    // 编号
    int number;
    // tid
    pthread_t tid;
    // 将数据刷新到buffer中
    char namebuffer[64];
};

// 函数结构必须和pthread_create提供的接口相同
void *start_routine(void *args)
{
    ThreadData *td = static_cast<ThreadData *>(args);
    int cnt = 10;
    while (cnt)
    {
        cout << "cnt: " << cnt << " &cnt: " << &cnt << endl;
        cnt--;
        // sleep(10);
    }
    return nullptr;
}

int main()
{
    // 1. 想要创建一批线程
    // 放在vector容器中
    vector<ThreadData *> threads;
#define NUM 10
    for (int i = 0; i < NUM; i++)
    {
        // new出ThreadData对象
        ThreadData *td = new ThreadData();
        td->number = i + 1;
        // 打印到namebuffer中
        snprintf(td->namebuffer, sizeof(td->namebuffer), "%s:%d", "thread", i + 1);
        // 创建线程
        // argv参数先不学习 设置为nullptr 创建start_routine回调函数 也就是线程执行任务
        pthread_create(&td->tid, nullptr, start_routine, td);
        threads.push_back(td);
        sleep(10);
    }

    for (auto &iter : threads)
    {
        cout << "create thread: " << iter->namebuffer << " : " << iter->tid << " success" << endl;
        sleep(1);
    }

    return 0;
}

在这里插入图片描述
在这里插入图片描述
一个线程如果出现了异常,会影响其他线程吗?会的(健壮性或者鲁棒性较差)对于信号而言,信号是整体发给进程的!

exit(0); 能不能用来终止线程,不能,因为exit是终止进程的!,任何一个执行流调用exit都会让整个进程退出

线程终止

如果需要只终止某个线程而不终止整个进程,可以有三种方法:

  1. 从线程函数return。这种方法对主线程不适用,从main函数return相当于调用exit。
  2. 线程可以调用pthread_ exit终止自己。
  3. 一个线程可以调用pthread_ cancel终止同一进程中的另一个线程。

pthread_exit函数

功能:线程终止
原型

void pthread_exit(void *value_ptr);

参数
value_ptr:value_ptr不要指向一个局部变量。
返回值:无返回值,跟进程一样,线程结束的时候无法返回到它的调用者(自身)

需要注意,pthread_exit或者return返回的指针所指向的内存单元必须是全局的或者是用malloc分配的,
不能在线程函数的栈上分配,因为当其它线程得到这个返回指针时线程函数已经退出了。

pthread_cancel函数

功能:取消一个执行中的线程
原型

int pthread_cancel(pthread_t thread);

参数
thread:线程ID
返回值:成功返回0;失败返回错误码

在这里插入图片描述

线程等待

为什么需要线程等待?
已经退出的线程,其空间没有被释放,仍然在进程的地址空间内。
创建新的线程不会复用刚才退出线程的地址空间。

pthread_join函数

功能:等待线程结束
原型

int pthread_join(pthread_t thread, void **value_ptr);

参数
thread:线程ID
value_ptr:它指向一个指针,后者指向线程的返回值
返回值:成功返回0;失败返回错误码

调用该函数的线程将挂起等待,直到id为thread的线程终止。
thread线程以不同的方法终止,通过pthread_join得到的终止状态是不同的,总结如下:

  1. 如果thread线程通过return返回,value_ ptr所指向的单元里存放的是thread线程函数的返回值。
  2. 如果thread线程被别的线程调用pthread_ cancel异常终掉,value_ ptr所指向的单元里存放的是常数PTHREAD_ CANCELED。
  3. 如果thread线程是自己调用pthread_exit终止的,value_ptr所指向的单元存放的是传给pthread_exit的参数。
  4. 如果对thread线程的终止状态不感兴趣,可以传NULL给value_ ptr参数。
    在这里插入图片描述
    在这里插入图片描述

线程退出(等待+终止)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <vector>
#include <cassert>
#include <unistd.h>

using namespace std;

// 这里的类当做结构体使用(方便理解)
class ThreadData
{
public:
    // 编号
    int number;
    // tid
    pthread_t tid;
    // 将数据刷新到buffer中
    char namebuffer[64];
};

// 将返回信息定义成对象
class ThreadReturn
{
public:
    int exit_code;
    int exit_result;
};

// 函数结构必须和pthread_create提供的接口相同
void *start_routine(void *args)
{
    sleep(3);
    ThreadData *td = static_cast<ThreadData *>(args);
    int cnt = 10;
    while (cnt)
    {
        cout << "cnt: " << cnt << " &cnt: " << &cnt << endl;
        cnt--;
        sleep(1);
    }

    // 线程如何终止
    // delete td;
    // 线程函数结束时,return的时候线程就算终止了
    // return nullptr;
    // 传编号过去
    // return (void *)6; // 这里会出现waring -- 将整数强转成指针类型 指针类型在64位机器上是8字节的
    // return (void*)td->number;

    // pthread_exit((void*)106); --既然假的地址,整数都能被外部拿到,那么如何返回的是,堆空间的地址呢?对象的地址呢?
    // 定义成对象
    ThreadReturn *tr = new ThreadReturn();
    // 自定义
    tr->exit_code = 1;
    tr->exit_result = 106;

    // 不能定义成ThreadReturn tr; --这样就是在栈上开辟空间了
    return (void*)tr;
}

int main()
{
    // 1. 想要创建一批线程
    // 放在vector容器中
    vector<ThreadData *> threads;
#define NUM 10
    for (int i = 0; i < NUM; i++)
    {
        // new出ThreadData对象
        ThreadData *td = new ThreadData();
        td->number = i + 1;
        // 打印到namebuffer中
        snprintf(td->namebuffer, sizeof(td->namebuffer), "%s:%d", "thread", i + 1);
        // 创建线程
        // argv参数先不学习 设置为nullptr 创建start_routine回调函数 也就是线程执行任务
        pthread_create(&td->tid, nullptr, start_routine, td);
        threads.push_back(td);
        // sleep(10);
    }

    for (auto &iter : threads)
    {
        cout << "create thread: " << iter->namebuffer << " : " << iter->tid << " success" << endl;
        // sleep(1);
    }

    // 线程也可以被取消!调用pthread_cancel方法
    // 但是线程要被取消的前提是该线程已经跑起来了!
    // sleep(5);
    // 取消一半的线程
    // for (int i = 0; i < threads.size() / 2; i++)
    // {
    //     // int pthread_cancel(pthread_t thread);
    //     // 线程如果是被取消的 其退出码是-1
    //     pthread_cancel(threads[i]->tid);
    //     cout << "pthread_cancel : " << threads[i]->namebuffer << " success" << endl;
    // }

    // 线程也是需要等待的,如果不进行等待就会造成类似僵尸进程的问题 -- 内存泄漏
    // 线程等待的作用:
    // 1. 获取新线程的退出信息 -- 也可以不关心
    // 2. 回收新线程的PCB等内核资源,防止内存泄漏 -- 暂时无法查看
    for (auto &iter : threads)
    {
        void *ret = nullptr;
        // pthread_join函数默认调用成功!在线程中不考虑异常问题(异常是进程考虑的)
        int n = pthread_join(iter->tid, (void **)&ret);
        // int n = pthread_join(iter->tid, &ret);
        // 若是等待不成功那就直接报错
        assert(n == 0);
        cout << " join : " << iter->namebuffer << " success ,exit_code: " << ((ThreadReturn*)ret)->exit_code << " exit_result: " << ((ThreadReturn*)ret)->exit_result << endl;
        delete iter;
    }
    cout << "main thread quit " << endl;

    return 0;
}

线程分离

默认情况下,新创建的线程是joinable的,线程退出后,需要对其进行pthread_join操作,否则无法释放资源,从而造成系统泄漏。
如果不关心线程的返回值,join是一种负担,这个时候,我们可以告诉系统,当线程退出时,自动释放线程资源。

int pthread_detach(pthread_t thread);

可以是线程组内其他线程对目标线程进行分离,也可以是线程自己分离:

pthread_detach(pthread_self());

joinable和分离是冲突的,一个线程不能既是joinable又是分离的。

在这里插入图片描述
在这里插入图片描述
处理线程分离有两种方式

  1. 主线程获取到新线程的线程标识符后分离 pthread_detach(tid);
  2. 新线程获取到自身的线程标识符后分离 pthread_detach(pthread_self());
    但是新线程和主线程的运行顺序是不可知的(由CPU调度器决定),所以可能新线程还没进行线程分离,主线程就进入阻塞等待了
    所以推荐让主线程对新线程做分离操作

线程ID及进程地址空间布局

pthread_ create函数会产生一个线程ID,存放在第一个参数指向的地址中。该线程ID和前面说的线程ID
不是一回事。
前面讲的线程ID属于进程调度的范畴。因为线程是轻量级进程,是操作系统调度器的最小单位,所以需要
一个数值来唯一表示该线程。
pthread_ create函数第一个参数指向一个虚拟内存单元,该内存单元的地址即为新创建线程的线程ID,
属于NPTL线程库的范畴。线程库的后续操作,就是根据该线程ID来操作线程的。
线程库NPTL提供了pthread_ self函数,可以获得线程自身的ID:

pthread_t pthread_self(void);

pthread_t 到底是什么类型呢?取决于实现。对于Linux目前实现的NPTL实现而言,pthread_t类型的线程ID,本质
就是一个进程地址空间上的一个地址。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

线程的局部存储

在这里插入图片描述
为啥g_val的地址值变化很大呢?
一开始全局变量是在已初始化数据段,所以地址很小
但是变成线程局部存储时,就位于共享区,地址变大很多
(地址由低到高)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/657790.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AI办公自动化:kimi批量新建文件夹

工作任务&#xff1a;批量新建多个文件夹&#xff0c;每个文件夹中的年份不一样 在kimi中输入提示词&#xff1a; 你是一个Python编程专家&#xff0c;要完成一个编写关于录制电脑上的键盘和鼠标操作的Python脚本的任务&#xff0c;具体步骤如下&#xff1a; 打开文件夹&…

二叉树习题精讲-相同的树

相同的树 100. 相同的树 - 力扣&#xff08;LeetCode&#xff09;https://leetcode.cn/problems/same-tree/description/ /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/ bool i…

夏日防晒笔记

1 防晒霜 使用方法&#xff1a;使用前上下摇晃瓶身4至5次&#xff0c;在距离肌肤10至15cm处均匀喷上。如在面部使用&#xff0c;请先喷在掌心再均匀涂抹于面部。排汗量较多时或擦拭肌肤后&#xff0c;请重复涂抹以确保防晒效果。卸除时使用普通洁肤产品洗净即可。

通过date命令给日志文件添加日期

一、背景 服务的日志没有使用日志工具&#xff0c;每次重启后生成新日志文件名称相同&#xff0c;新日志将会把旧日志文件冲掉&#xff0c;旧日志无法保留。 为避免因旧日志丢失导致无法定位问题&#xff0c;所以需要保证每次生成的日志文件名称不同。 二、解决 在启动时&am…

cs61B-sp21 | lab6

cs61B-sp21 | lab6 TODO 1 在 CapersRepository.java 中 static final File CAPERS_FOLDER null; // TODO Hint: look at the join // function in Utils在 Utils.java 我们找到 join 函数&#xff0c;第一个 join 的作用是将 first 和 others 连接起来形成一个路径…

【ArcGISPro】3.1.5下载和安装教程

下载教程 arcgis下载地址&#xff1a;Трекер (rutracker.net) 点击磁力链下载弹出对应的软件进行下载 ArcGISPro3.1新特性 ArcGIS Pro 3.1是ArcGIS Pro的最新版本&#xff0c;它引入了一些新的特性和功能&#xff0c;以提高用户的工作效率和数据分析能力。以下是ArcGIS…

c#对操作系统的时间无法更新?

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

I.MX6ULL主频和时钟配置实验

系列文章目录 I.MX6ULL主频和时钟配置实验 I.MX6ULL主频和时钟配置实验 系列文章目录一、前言二、I.MX6U 时钟系统详解三、硬件原理四、 7 路 PLL 时钟源五、时钟树简介六、内核时钟设置七、PFD 时钟设置八、AHB、IPG 和 PERCLK 根时钟设置九、实验程序编写十、编译下载10.1编写…

线程池的实现

线程池是一种池式组件&#xff0c;通过创建和维护一定数量的线程&#xff0c;实现这些线程的重复使用&#xff0c;避免了频繁创建和销毁线程的开销&#xff0c;从而提升了性能 线程池的作用&#xff1a; 1.复用线程资源&#xff1b; 2.减少线程创建和销毁的开销&#xff1b; …

LBank研究院: DePIN赛道解析|加密精神与Jevons悖论的第三世界

作者&#xff1a;Eva&#xff0c;LBank研究员 *本人谨代表作者观点&#xff0c;不构成任何交易建议。 *本文内容为原创&#xff0c;版权为LBank所有&#xff0c;如需转载请注明作者和出处&#xff0c;否则将追究法律责任。 TLDR: DePIN是对传统老牌硬件的洗牌挑战&#xff…

excel 点击单元格的内容 跳转到其他sheet设置

如图点击1处跳转到2 按照如下图步骤操作即可

js setTimeout、setInterval、promise、async await执行顺序梳理

基础知识 async: 关键字用于标记一个函数为异步函数&#xff0c;该函数中有一个或多个promise对象&#xff0c;需要等待执行完成后才会继续执行。 await:关键字&#xff0c;用于等待一个promise对象执行完&#xff0c;并返回其中的值&#xff0c;只能在async函数内部使用。可…

【PB案例学习笔记】-11动画显示窗口

写在前面 这是PB案例学习笔记系列文章的第11篇&#xff0c;该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习&#xff0c;提高编程技巧&#xff0c;以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码&#xff0c;小凡都上传到了gite…

调用萨姆索诺夫函数:深入探索函数的参数与返回值

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、萨姆索诺夫函数的引入与调用 二、如何获取函数的返回值 三、无参数与无返回值的函数调…

基于魔搭开源推理引擎 DashInfer实现CPU服务器大模型推理--理论篇

前言 在人工智能技术飞速发展的今天&#xff0c;如何高效地在CPU上运行大规模的预训练语言模型&#xff08;LLM&#xff09;成为了加速生成式AI应用广泛落地的核心问题。阿里巴巴达摩院模型开源社区ModelScope近期推出了一款名为DashInfer的推理引擎&#xff0c;旨在解决这一挑…

语音控制系统的安全挑战与防御策略(上)

语音控制系统&#xff08;VCS&#xff09;提供了便捷的用户界面&#xff0c;涉及智能家居、自动驾驶汽车、智能客服等众多应用场景&#xff0c;已成为现代智能设备不可或缺的一部分。其市场规模预计到2023年达到70亿美元&#xff0c;这种扩张带来了重大的安全挑战&#xff0c;如…

STM32简易音乐播放器(HAL库)

一、设计描述 本设计以STM32MP157A单片机为核心控制器&#xff0c;加上其他的模块一起组成基于单片机的音乐盒的整个系统&#xff0c;通过不同频率的PWM使蜂鸣器播放音乐&#xff0c;通过按键中断实现歌曲切换&#xff0c;音量调节&#xff0c;定时器中断实现播放速度调节&…

如何为 kNN 搜索选择最佳 k 和 num_candidates

作者&#xff1a;Madhusudhan Konda 如何选择最好的 k 和 num_candidates&#xff1f; 向量搜索在当前的生成式人工智能/机器学习领域中已经成为一个改变游戏规则的技术。它允许我们基于语义含义而不仅仅是精确的关键词匹配来找到相似的项目。 Elasticsearch的 k-近邻&#x…

使用 Flask 实现异步请求处理

文章目录 为什么需要异步请求处理&#xff1f;在 Flask 中实现异步请求处理使用 Flask-Cors 扩展 总结 在开发 Web 应用程序时&#xff0c;异步请求处理是提高性能和并发能力的重要方法之一。Flask 是一个轻量级的 Web 框架&#xff0c;它提供了易于使用的工具来实现异步请求处…