【Yolov5+Deepsort】训练自己的数据集(1)| 目标检测追踪 | 轨迹绘制

📢前言:本篇是关于如何使用YoloV5+Deepsort训练自己的数据集,从而实现目标检测与目标追踪,并绘制出物体的运动轨迹。本章讲解的为第一个内容:简单介绍YoloV5+Deepsort中所用到的目标检测,追踪及sort&Deppsort算法。本文中用到的数据集均为自采,实验动物为斑马鱼。文尾附Deepsort原论文。

💬源码如下:

GitHub - mikel-brostrom/yolo_tracking: A collection of SOTA real-time, multi-object tracking algorithms for object detectors

GitHub - Sharpiless/Yolov5-Deepsort: 最新版本yolov5+deepsort目标检测和追踪,能够显示目标类别,支持5.0版本可训练自己数据集

目录

Ⅰ简述目标检测

0x00 什么是目标检测

0x01 一般步骤

0x02 常用算法

Ⅱ 简述目标追踪

0x00 什么是目标追踪

0x01 一般步骤

0x02 常用算法

Ⅲ sort算法

0x00 卡尔曼滤波

0x01 匈牙利算法

Ⅳ Deepsort

0x00 算法的一般流程


Ⅰ简述目标检测

0x00 什么是目标检测

目标检测是计算机视觉领域的一个重要任务,它旨在识别图像或视频中的特定对象,并通过在目标周围绘制边界框(bounding box)来标记它们的位置。

这种技术在许多实际应用中都有广泛的应用,如自动驾驶、安防监控、智能交通、人脸识别、工业质检等。

0x01 一般步骤

1. 输入图像:

  • 首先,目标检测算法会接收一个输入图像或视频帧。

2. 特征提取

  • 然后,算法会通过卷积神经网络(CNN)等方法对图像进行特征提取。这些特征可以是边缘、纹理、颜色等图像的局部或全局特征。

3. 候选区域生成

  • 接下来,目标检测算法会根据特征图选择一些可能包含目标的候选区域,通常称为区域提议(Region Proposals)。常用的方法包括Selective Search、R-CNN等。

4. 目标分类与定位:

  • 在得到候选区域后,算法会对每个区域进行目标分类和边界框的回归。目标分类是指确定区域中是否包含目标(如车、人、动物等),而边界框回归则是调整候选框的位置和大小以更准确地围绕目标。

5. 后处理:

  • 最后,算法会进行一些后处理步骤,例如非极大值抑制(NMS),以剔除重叠的边界框并保留最可信的检测结果。

目标检测有许多不同的算法和架构,其中一些著名的方法包括Faster R-CNN、YOLO、SSD(SINGLE SHOT MULTIBOX DETECTOR)、RetinaNet等。每种方法都有其优缺点和适用场景,取决于应用需求和计算资源。

0x02 常用算法

RCNN系列:

  • RCNN(Region-based Convolutional Neural Networks): 首先通过选择性搜索(Selective Search)算法提取候选区域,然后对每个候选区域进行卷积神经网络(CNN)特征提取和目标分类。

  • Fast R-CNN: 在RCNN的基础上引入ROI池化(ROI Pooling)层,使得特征提取更高效。

  • Faster R-CNN: 引入RPN(Region Proposal Network),将候选区域的提取和目标分类合并为一个端到端的网络,大大加快了检测速度。

YOLO系列

  • YOLOv1:将目标检测看作回归问题,通过一个CNN直接预测目标的边界框和类别概率。
  • YOLOv2 / YOLO9000:在YOLOv1基础上改进,引入Darknet-19网络和多尺度预测,提高检测精度。YOLO9000是在YOLOv2的基础上通过联合训练多个数据集实现了多标签分类和检测。
  • YOLOv3:进一步改进YOLOv2,采用更深的Darknet-53网络和FPN,提高小目标检测性能。

SSD(Single Shot Multibox Detector):一种单阶段目标检测算法,通过在不同尺度的特征图上预测边界框和类别概率来实现目标检测。

RetinaNet:结合了Focal Loss和FPN,用于解决目标检测中类别不平衡问题,提高了检测性能。 

EfficientDet:高效的目标检测算法,通过改进网络结构和优化目标函数,实现高精度和高效率的目标检测。

Ⅱ 简述目标追踪

0x00 什么是目标追踪

目标追踪是计算机视觉领域的一项任务,旨在从视频序列中连续地跟踪特定目标的运动轨迹。与目标检测不同,目标追踪要在时间上保持目标的一致性,而不仅仅是在单个图像中检测目标的存在。

0x01 一般步骤

1. 目标初始化: 首先,目标追踪算法会在视频序列的第一帧中检测和识别目标,并为目标分配唯一的ID。这个过程称为目标初始化。

2. 目标预测: 在之后的视频帧中,目标追踪算法会使用目标在上一帧中的位置和运动信息,对目标在当前帧的位置进行预测。通常,预测可以基于一些简单的运动模型或者基于目标的历史运动轨迹。

3. 目标更新: 接下来,算法会使用目标检测或特征匹配等技术来确定当前帧中目标的准确位置。这个过程可以使用像素级的区域匹配、相关滤波器、深度学习特征提取等方法。

4. 目标关联: 一旦目标在当前帧中被确定,算法需要将其与之前帧中的目标进行关联,以保持目标的一致性。这可能涉及到目标ID的跟踪,确保目标的唯一标识在整个视频序列中保持一致。

5. 后处理: 最后,目标追踪算法会进行一些后处理步骤,例如滤波或者平滑处理,以减少噪声或者不稳定性,并提高追踪的准确性和稳定性。

目标追踪在许多实际应用中都有广泛的应用,例如视频监控、自动驾驶、视频分析、虚拟现实等。

0x02 常用算法

卡尔曼滤波器(Kalman Filter): 卡尔曼滤波是一种递归的状态估计算法,通常用于目标运动预测和位置估计。它结合了观测数据和系统动力学模型,对目标的状态进行预测和更新。

粒子滤波器(Particle Filter): 粒子滤波是一种蒙特卡洛方法,它使用一组随机粒子来估计目标的状态。粒子滤波在非线性系统和非高斯噪声下表现较好。

单目标跟踪器:

  • MedianFlow: 基于KLT(Kanade-Lucas-Tomasi)光流和匹配的简单单目标跟踪器。
  • KCF(Kernelized Correlation Filters): 使用核相关滤波器来实现快速的单目标跟踪。
  • TLD(Tracking-Learning-Detection): 结合目标检测和跟踪,能够在目标丢失时重新检测目标。
  • MIL(Multi Instance Learning): 采用多实例学习方法跟踪目标。

多目标跟踪器:

  • SORT(Simple Online and Real Time Tracking): 在多目标跟踪中,通过卡尔曼滤波和匈牙利算法进行目标关联。
  • DeepSORT: 在SORT的基础上加入深度学习特征,提高目标关联的准确性和鲁棒性。
  • IOU Tracker: 使用目标边界框的IoU(Intersection over Union)来进行目标关联的简单方法。

深度学习方法:

  • Siamese网络: 使用孪生网络进行目标匹配,常用于目标跟踪任务。
  • SiamRPN、SiamFC、SiamMask: 基于Siam网络的不同变种,用于目标跟踪和目标分割。

在线学习方法:

  • 在线提升: 在线增强学习器,不断地更新模型来适应目标外观的变化。
  • Online SVM(Support Vector Machine): 在线学习SVM,用于目标分类和跟踪。

Ⅲ sort算法

SORT(Simple Online and Realtime Tracking)是一种用于多目标跟踪的简单而有效的算法,它在实时场景下能够进行在线目标追踪。

SORT算法基于卡尔曼滤波匈牙利算法的多目标跟踪器。

0x00 卡尔曼滤波

卡尔曼滤波是一种递归状态估计算法,主要用于估计目标在时间上的运动状态,例如位置和速度。

  • 在SORT算法中,卡尔曼滤波的作用是用于对目标的状态进行预测和更新
  • 在目标追踪过程中,卡尔曼滤波能够对目标的运动轨迹进行预测,并根据实际的检测结果对目标状态进行更新。

卡尔曼滤波的作用可分为两个主要方面:

1.目标预测

  • 在目标追踪过程中,目标在每一帧中都会进行位置预测。卡尔曼滤波通过使用之前帧中的目标状态和运动信息,预测目标在下一帧中的位置和速度。这样能够使得目标跟踪器对目标的未来位置有一个较好的估计。

2.状态更新

  • 在进行目标关联时,SORT算法会使用匈牙利算法将当前帧的检测结果与之前帧中的目标进行关联。关联的结果可能会包含一些噪声或误匹配,而卡尔曼滤波可以在一定程度上消除这些误差。通过将检测结果与卡尔曼滤波预测的状态进行融合,得到目标的最终位置和速度,并对目标状态进行更新。

0x01 匈牙利算法

匈牙利算法是用于解决二分图最优匹配问题的经典算法,它能够在多个候选匹配中找到最佳的匹配组合,以最小化总匹配成本。  

  • 在SORT算法中,匈牙利算法的作用是将当前帧的目标检测结果与之前帧中的跟踪目标进行关联,以确定目标在连续帧中的唯一ID。

SORT中的匈牙利算法的具体作用如下:

1.目标关联

  • 在每一帧中,进行目标检测,得到新的目标边界框。同时,之前帧中的每个已跟踪目标也有一个预测位置。
  • SORT算法会使用匈牙利算法,将当前帧的检测结果与之前帧中的目标进行关联。将目标检测与预测的目标进行匹配,得到最佳的匹配组合。

2.成本计算

  • 匈牙利算法会计算目标检测与预测目标之间的成本,成本通常由目标边界框之间的IoU(Intersection over Union)计算得出。IoU度量了两个边界框的重叠程度,可以用来评估目标检测与预测目标的相似程度。

3.最优匹配

  • 匈牙利算法的目标是找到一种最佳匹配,使得总成本最小。通过最小化目标检测与预测目标之间的成本,找到最佳的匹配组合,确定目标在连续帧中的唯一ID。

4.目标ID更新

  • 在完成匈牙利算法后,已跟踪目标的ID会随着匹配的结果进行更新。如果一个目标检测与之前的某个目标匹配,该目标将被赋予相应的ID,从而在多个连续帧中保持一致的跟踪。

🚩简单来说:

在sort算法中,

卡尔曼滤波的主要作用是利用当前时刻的运动变量来预测下一时刻的运动变量,同时第一次的检测结果用于初始化卡尔曼滤波的运动状态

匈牙利算法主要作用是将一组检测框和卡尔曼预测的框进行匹配,以找到卡尔曼预测的框与其最匹配的检测框,从而实现目标的追踪

Ⅳ Deepsort算法

DeepSORT(Deep Learning-based SORT)是基于深度学习的多目标跟踪算法,是SORT的改进版。

0x00 算法的一般流程

1.目标检测

  • 在每一帧中,使用目标检测算法(如YOLO、Faster R-CNN、SSD等)来检测图像中的目标,并得到目标的边界框(bounding box)和类别信息。

2.深度特征提取

  • 对于每个检测到的目标,使用预训练的深度学习模型(如ResNet、MobileNet等)来提取目标区域的特征向量。这些特征向量能够表示目标的语义信息和视觉特征。

3.目标关联

  • 利用匈牙利算法将当前帧的检测结果与之前帧中的跟踪目标进行关联。匈牙利算法通过最小化匹配的总成本来找到最佳的匹配,成本通常由目标检测与预测目标之间的外观相似性和运动一致性计算得出。

4.卡尔曼滤波预测

  • 对于每个已跟踪的目标,使用卡尔曼滤波来预测其下一帧的位置。卡尔曼滤波利用目标的历史运动信息和观测数据,预测目标在下一帧中的位置和速度。

5.特征匹配

  • 将当前帧的检测结果与之前帧中的跟踪目标进行特征匹配。采用余弦相似度或欧氏距离等度量方法,比较特征向量之间的相似性。

6.外观相似性分数计算

  • 计算目标检测结果与跟踪目标之间的外观相似性分数。综合考虑特征匹配和运动一致性,为每个匹配组合分配相似性分数。

7.最终关联

  • 根据外观相似性分数,选择最佳的目标关联组合。这样能够确定目标在连续帧中的唯一ID,实现多目标的连续跟踪。

8.卡尔曼滤波更新

  • 对于成功匹配的目标,使用卡尔曼滤波来更新其状态。通过融合检测结果和卡尔曼滤波预测的信息,得到目标的最终位置和速度,并对目标状态进行更新。

9.状态估计不确定性更新

  • 根据卡尔曼滤波的结果,更新目标的状态估计不确定性。这样可以根据目标的可信度来调整匹配的权重。

10.目标确认和删除

  • 对于一些没有成功匹配到检测结果的目标,或者匹配结果置信度较低的目标,进行确认和删除操作。可以根据跟踪器的置信度阈值来决定是否保留目标。

11.轨迹维护

  • 对于成功匹配的目标,更新目标的运动轨迹。

12.重复

  • 对于下一帧,重复上述过程,进行目标检测、特征提取、目标关联、更新等操作。

END


📝因为作者的能力有限,所以文章可能会存在一些错误和不准确之处,恳请大家指出!

 📃参考文献:

[1] Simple Online and Realtime Tracking with a Deep Association Metric

[1703.07402] Simple Online and Realtime Tracking with a Deep Association Metric (arxiv.org)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/65578.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

什么是进程、线程、协程

什么是进程? 我们都知道计算机的核心是CPU,它承担了所有的计算任务;而操作系统是计算机的管理者,它负责任务的调度、资源的分配和管理,统领整个计算机硬件;应用程序则是具有某种功能的程序,程序…

CSS 的选择器有哪些种类?分别如何使用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 元素选择器(Element Selector)⭐ 类选择器(Class Selector)⭐ ID 选择器(ID Selector)⭐ 后代选择器(Descendant Selector)⭐ 子元素选择器&a…

嵌入式开发学习(STC51-7-矩阵按键)

内容 按下S1-S16键,对应数码管最左边显示0-F 矩阵按键简介 独立按键与单片机连接时,每一个按键都需要单片机的一个I/O 口,若某单片机系统需较多按键,如果用独立按键便会占用过多的I/O口资源;而单片机 系统中I/O口资…

C++利用mutex和thread实现一个死锁

程序 #include<iostream> #include<mutex> #include<thread> using namespace std; mutex mtx1; mutex mtx2; void A(){mtx1.lock();cout<<"a:mtx1"<<endl;this_thread::sleep_for(chrono::milliseconds(1000));mtx2.lock();cout<…

【Sa-Token】9、Sa-Token实现在线用户管理功能

尽管框架将大部分操作提供了简易的封装&#xff0c;但在一些特殊场景下&#xff0c;我们仍需要绕过框架&#xff0c;直达数据底层进行一些操作。 1、官方文档 会话查询 https://sa-token.cc/doc.html#/up/search-sessionSa-Token提供以下API助你直接操作会话列表&#xff1a…

【C++基础】友元总结一些坑

友元类 友元类&#xff08;Friend Class&#xff09;是一种在C中用于实现类之间访问权限的特殊机制。通过友元类&#xff0c;一个类可以允许另一个类访问其私有成员&#xff0c;甚至可以使另一个类成为其友元&#xff0c;使其能够访问所有成员&#xff0c;包括私有成员。这种机…

python爬虫2:requests库-原理

python爬虫2&#xff1a;requests库-原理 前言 ​ python实现网络爬虫非常简单&#xff0c;只需要掌握一定的基础知识和一定的库使用技巧即可。本系列目标旨在梳理相关知识点&#xff0c;方便以后复习。 目录结构 文章目录 python爬虫2&#xff1a;requests库-原理1. 概述2. re…

学习笔记-JVM-对象结构及生命周期

申明&#xff1a;文章内容是本人学习极客时间课程所写&#xff0c;文字和图片基本来源于课程资料&#xff0c;在某些地方会插入一点自己的理解&#xff0c;未用于商业用途&#xff0c;侵删。 原资料地址&#xff1a;课程资料 对象的创建流程 常量池检查:检查new指令是否能在常…

【设计模式——学习笔记】23种设计模式——中介者模式Observer(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 案例引入案例一普通实现中介者模式 案例二 介绍基础介绍登场角色尚硅谷 《图解设计模式》 案例实现案例一&#xff1a;智能家庭类图实现 案例二&#xff1a;登录页面逻辑实现说明类图实现 总结文章说明 案例引入 案例一 普通实现 在租房过程中&#xff0c;客户可能…

2.5D游戏是如何做出来的呢,2.5D游戏快速制作教程

前言 【Unity实战篇 】 | 如何制作一款2.5D游戏&#xff0c;2.5D游戏制作案例一、2.5D 游戏概念二、绘制地图三、添加玩家动画和移动等操作四、视角配置4.1 调整摄像机与场景对象的角度4.2 增加镜头旋转功能 五、游戏效果展示 总结 前言 玩过游戏的朋友都知道&#xff0c;市面…

HarmonyOS NEXT,生命之树初长成

在不同的神话体系中&#xff0c;都有着关于生命之树的记载。 比如在北欧神话中&#xff0c;一株巨大的树木联结着九大世界&#xff0c;其被称为“尤克特拉希尔”Yggdrasill。在中国的《山海经》中&#xff0c;也有着“建木”的传说&#xff0c;它“有九欘&#xff0c;下有九枸&…

idea添加翻译插件并配置有道翻译

1、安装Translation插件 2、 创建有道云应用 有道智云控制台 3、设置idea 4、效果&#xff08;选中文本右键翻译&#xff0c;默认快捷键CtrlShiftY&#xff09;

安达发制造工业迈向智能化:APS高级计划排程助力提升生产效率

随着市场竞争的加剧&#xff0c;制造企业纷纷寻求提高生产效率和降低成本的方法。近年来&#xff0c;越来越多的制造企业开始采用APS(高级计划与排程)系统&#xff0c;以优化生产计划和排程&#xff0c;提高生产效率&#xff0c;并在竞争中取得优势。 现代制造业通常面临复杂的…

Idea中maven无法下载源码

今天在解决问题的时候想要下载源码&#xff0c;突然发现idea无法下载&#xff0c;这是真的蛋疼&#xff0c;没办法查看原因&#xff0c;最后发现问题的原因居然是因为Maven&#xff0c;由于我使用的idea的内置的Bundle3的Maven&#xff0c;之前没有研究过本地安装和内置的区别&…

ESP 32 蓝牙虚拟键盘链接笔记本电脑的键值问题

由于打算利用esp32 通过蓝牙链接电脑后实现一些特俗的键盘功能&#xff0c;所以就折腾了一下&#xff0c;折腾最耗费时间的却是键值问题&#xff0c;让一个20多年的老司机重新补充了知识 过程曲折就不说了&#xff0c;直接说结果。 我们通过网络搜索获取的键值和蓝牙模拟键盘传…

Leetcode-每日一题【剑指 Offer 11. 旋转数组的最小数字】

题目 把一个数组最开始的若干个元素搬到数组的末尾&#xff0c;我们称之为数组的旋转。 给你一个可能存在 重复 元素值的数组 numbers &#xff0c;它原来是一个升序排列的数组&#xff0c;并按上述情形进行了一次旋转。请返回旋转数组的最小元素。例如&#xff0c;数组 [3,4…

【论文阅读】对抗溯源图主机入侵检测系统的模仿攻击(NDSS-2023)

作者&#xff1a;伊利诺伊大学芝加哥分校-Akul Goyal、Gang Wang、Adam Bates&#xff1b;维克森林大学-Xueyuan Han、 引用&#xff1a;Goyal A, Han X, Wang G, et al. Sometimes, You Aren’t What You Do: Mimicry Attacks against Provenance Graph Host Intrusion Detect…

docker容器监控:Cadvisor +Prometheus+Grafana的安装部署

目录 Cadvisor PrometheusGrafana的安装部署 一、安装docker&#xff1a; 1、安装docker-ce 2、阿里云镜像加速器 3、下载组件镜像 4、创建自定义网络 二、部署Cadvisor 1、被监控主机上部署Cadvisor容器 2、访问cAdvisor页面 三、安装prometheus 1、部署Prometheus…

20230806将ASF格式的视频转换为MP4

20230806将ASF格式的视频转换为MP4 2023/8/6 18:47 缘起&#xff0c;自考中山大学的《计算机网络》&#xff0c;考试《数据库系统原理》的时候找到视频&#xff0c;由于个人的原因&#xff0c;使用字幕更加有学习效率&#xff01; 由于【重型】的PR2023占用资源较多&#xff0c…

Spring security之JWT

JWT 这里写目录标题 JWT一级目录二级目录三级目录1.什么是JWT 2.JWT的组成部分3.编码/解码4.特点5. 为什么使用JWT5.1传统的验证方式 5.2基于JWT的验证方式6.JWT进行登录验证6.1依赖安装6.2编写UserDetailServiceImpl类6.3编写UserDetailsImpl类6.4 实现config.SecurityConfig类…