Postgresql源码(134)优化器针对volatile函数的排序优化分析

相关
《Postgresql源码(133)优化器动态规划生成连接路径的实例分析》

上一篇对路径的生成进行了分析,通过make_one_rel最终拿到了一个带着路径的RelOptInfo。本篇针对带volatile函数的排序场景继续分析subquery_planner的后续流程。

subquery_planner
	grouping_planner
		query_planner
			make_one_rel   <<< 上一篇
		// 后续流程         <<< 本篇

总结速查

一句话总结:带有volatile的投影列会被SORT算子忽略,达到先排序在投影计算volatile的效果。

  • grouping_planner→make_one_rel层层生成path,每个path都会带pathtarget(不一定是SQL中最后需要的target列表),一般都是层层继承上来的。
  • make_one_rel生成的最终path中,会忽略volatile函数列,交给外层grouping_planner函数处理,所以生成的path中的pathtarget都是看不到volatile函数列的。
  • 这里一个关键逻辑就path中的pathtargetmake_sort_input_target计算出来列表的是不是一样的
    • 如果是一样的就不加投影节点,等后面加sort时(create_ordered_paths)先加sort在加投影,计算顺序就是先排序,在拿排序阶段投影(计算random函数)
    • 如果不一样就直接加投影节点,后面sort会加到投影上面,计算顺序就是先投影(计算random函数),再排序。
  • path中的pathtarget会忽略volatile函数。
  • make_sort_input_target中的volatile函数正常也会被忽略掉(实例3),除非volatile函数就是排序列(实例4)。

最终效果是,投影列有volatile函数的SQL(函数非排序列),sort节点会忽略这类函数的执行,sort结束后,在投影节点使用sort的结果集来计算这类函数。

实例3:
在这里插入图片描述

1 实例:简单join

drop table student;
create table student(sno int primary key, sname varchar(10), ssex int);
insert into student values(1, 'stu1', 0);
insert into student values(2, 'stu2', 1);
insert into student values(3, 'stu3', 1);
insert into student values(4, 'stu4', 0);

drop table course;
create table course(cno int primary key, cname varchar(10), tno int);
insert into course values(20, 'meth', 10);
insert into course values(21, 'english', 11);

drop table teacher;
create table teacher(tno int primary key, tname varchar(10), tsex int);
insert into teacher values(10, 'te1', 1);
insert into teacher values(11, 'te2', 0);

drop table score;
create table score (sno int, cno int, degree int);
create index idx_score_sno on score(sno);
insert into score values (1, 20, 100);
insert into score values (1, 21, 89);
insert into score values (2, 20, 99);
insert into score values (2, 21, 90);
insert into score values (3, 20, 87);
insert into score values (3, 21, 20);
insert into score values (4, 20, 60);
insert into score values (4, 21, 70);


explain 
SELECT STUDENT.sname, COURSE.cname, SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno;

                                  QUERY PLAN
------------------------------------------------------------------------------
 Hash Left Join  (cost=69.50..110.65 rows=2040 width=80)
   Hash Cond: (score.cno = course.cno)
   ->  Hash Right Join  (cost=34.75..70.53 rows=2040 width=46)
         Hash Cond: (score.sno = student.sno)
         ->  Seq Scan on score  (cost=0.00..30.40 rows=2040 width=12)
         ->  Hash  (cost=21.00..21.00 rows=1100 width=42)
               ->  Seq Scan on student  (cost=0.00..21.00 rows=1100 width=42)
   ->  Hash  (cost=21.00..21.00 rows=1100 width=42)
         ->  Seq Scan on course  (cost=0.00..21.00 rows=1100 width=42)

1.1 subquery_planner→grouping_planner

grouping_planner
	current_rel = query_planner(root, standard_qp_callback, &qp_extra);
  • current_rel:
    在这里插入图片描述
	final_target = create_pathtarget(root, root->processed_tlist);
  • 得到final_target
    • final_target->exprs->elements[0] : {varno = 1, varattno = 2, vartype = 1043} STUDENT.sname
    • final_target->exprs->elements[1] : {varno = 4, varattno = 2, vartype = 1043} COURSE.cname
    • final_target->exprs->elements[2] : {varno = 2, varattno = 3, vartype = 23} SCORE.degree
	if (parse->sortClause)
		make_sort_input_target
	if (activeWindows)
	 	...
	if (have_grouping)
		...
	if (parse->hasTargetSRFs)
		...
  • apply_scanjoin_target_to_paths创建投影节点
    在这里插入图片描述
	/* Apply scan/join target. */
	scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
		&& equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
	apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets,
								   scanjoin_targets_contain_srfs,
								   scanjoin_target_parallel_safe,
								   scanjoin_target_same_exprs);
  • 继续
	if (have_grouping)
		...
	if (activeWindows)
		...
	if (parse->distinctClause)
		...
	if (parse->sortClause)
		create_ordered_paths
  • 创建空的最顶层节点
	final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
  • 遍历current_rel中所有的path,用add_path加入到最顶层节点中。
  • 其中limit、rowclock的场景需要特殊处理下。
	foreach(lc, current_rel->pathlist)
		if (parse->rowMarks)
			create_lockrows_path
		if (limit_needed(parse))
			create_limit_path
		add_path(final_rel, path);

grouping_planner函数执行结束,最后拼接的final_rel在upper_rels里面记录:
在这里插入图片描述
pathlist最上层是投影节点:
在这里插入图片描述

1.2 standard_planner→subquery_planner

subquery_planner中后续处理流程:

计划生成步骤作用
root = subquery_planner优化器入口,返回PlannerInfo,里面记录了一个最终的RelOptInfo相当于一张逻辑表,每个ROI都记录了多个path,表示不同的计算路径
final_rel = fetch_upper_rel拿到最终的RelOptInfo
best_path = get_cheapest_fractional_path在RelOptInfo中选择一个最优的path
top_plan = create_plan→create_plan_recurse根据最优path生成计划

2 实例:【简单join】【排序非投影列】【投影列无函数】

drop table student;
create table student(sno int primary key, sname varchar(10), ssex int);
insert into student values(1, 'stu1', 0);
insert into student values(2, 'stu2', 1);
insert into student values(3, 'stu3', 1);
insert into student values(4, 'stu4', 0);

drop table course;
create table course(cno int primary key, cname varchar(10), tno int);
insert into course values(20, 'meth', 10);
insert into course values(21, 'english', 11);

drop table teacher;
create table teacher(tno int primary key, tname varchar(10), tsex int);
insert into teacher values(10, 'te1', 1);
insert into teacher values(11, 'te2', 0);

drop table score;
create table score (sno int, cno int, degree int);
create index idx_score_sno on score(sno);
insert into score values (1, 20, 100);
insert into score values (1, 21, 89);
insert into score values (2, 20, 99);
insert into score values (2, 21, 90);
insert into score values (3, 20, 87);
insert into score values (3, 21, 20);
insert into score values (4, 20, 60);
insert into score values (4, 21, 70);


explain verbose
SELECT STUDENT.sname, COURSE.cname, SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
ORDER BY COURSE.cno;

                                      QUERY PLAN
--------------------------------------------------------------------------------------
 Sort  (cost=3.44..3.46 rows=8 width=19)
   Output: student.sname, course.cname, score.degree, course.cno
   Sort Key: course.cno
   ->  Hash Left Join  (cost=2.14..3.32 rows=8 width=19)
         Output: student.sname, course.cname, score.degree, course.cno
         Inner Unique: true
         Hash Cond: (score.cno = course.cno)
         ->  Hash Right Join  (cost=1.09..2.21 rows=8 width=13)
               Output: student.sname, score.degree, score.cno
               Inner Unique: true
               Hash Cond: (score.sno = student.sno)
               ->  Seq Scan on public.score  (cost=0.00..1.08 rows=8 width=12)
                     Output: score.sno, score.cno, score.degree
               ->  Hash  (cost=1.04..1.04 rows=4 width=9)
                     Output: student.sname, student.sno
                     ->  Seq Scan on public.student  (cost=0.00..1.04 rows=4 width=9)
                           Output: student.sname, student.sno
         ->  Hash  (cost=1.02..1.02 rows=2 width=10)
               Output: course.cname, course.cno
               ->  Seq Scan on public.course  (cost=0.00..1.02 rows=2 width=10)
                     Output: course.cname, course.cno

2.1 grouping_planner

grouping_planner
	current_rel = query_planner(root, standard_qp_callback, &qp_extra);
	final_target = create_pathtarget(root, root->processed_tlist);
	if (parse->sortClause)
		sort_input_target = make_sort_input_target(root, final_target, &have_postponed_srfs);

make_sort_input_target函数的作用:

  • 排序列可能不在最终的投影列里面,需要特殊处理下。
  • 易变函数和成本很高的函数需要再投影列中识别出来,先排序,在计算。
    • 因为1:sort limit场景可以少算一些。
    • 因为2:易变函数每次算都可能不一样,先排序好了再算有利于结果集稳定,例如current_timestamp这种,期望是排序后给出的每一样的时间都是递增的,如果先排序在计算就能得到这种效果。

生成的final_target和sort_input_target相同,因为没看到srf函数、易变函数。

final_target同sort_input_targetVar指向列sortgrouprefs
final_target->exprs->elements[0]varno = 1, varattno = 2, vartype = 1043STUDENT.sname0
final_target->exprs->elements[1]varno = 4, varattno = 2, vartype = 1043COURSE.cname0
final_target->exprs->elements[2]varno = 2, varattno = 3, vartype = 23SCORE.degree0
final_target->exprs->elements[3]varno = 4, varattno = 1, vartype = 23COURSE.cno1

grouping_planner继续执行,开始生成排序path:

	...
	if (parse->sortClause)
		current_rel = create_ordered_paths(root,
										   current_rel,
										   final_target,
										   final_target_parallel_safe,
										   have_postponed_srfs ? -1.0 :
										   limit_tuples);

grouping_planner→create_ordered_paths

create_ordered_paths
	// 创建一个排序节点
	ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL);

	// 拿到path入口,目前顶层是T_ProjectionPath,就一个节点
	foreach(lc, input_rel->pathlist)
		// 判断input_path->pathkeys是不是有序的?
		// 因为现在计划树是hashjoin,每一列都是无序的,所以input_path->pathkeys是空的,需要排序
		is_sorted = pathkeys_count_contained_in(root->sort_pathkeys, input_path->pathkeys, &presorted_keys);
		if (is_sorted)
			sorted_path = input_path;
		else
			sorted_path = (Path *) create_sort_path(root,
														ordered_rel,
														input_path,
														root->sort_pathkeys,
														limit_tuples);
		
  • 输入的path顶层节点是project本来没有带pathkeys信息,这里创建一个sort节点放在上面,加入pathkey信息。
  • 但生成的sortpath没看到排序列的信息?
  • 排序信息在基类path的pathkeys中。
sorted_path = 
{ path = 
  { type = T_SortPath, 
    pathtype = T_Sort, 
    parent = 0x2334030, 
    pathtarget = 0x2333ef0, 
    param_info = 0x0, 
    parallel_aware = false, parallel_safe = true, parallel_workers = 0, 
    rows = 8, 
    startup_cost = 3.4437500000000005, 
    total_cost = 3.4637500000000006, 
    pathkeys = 0x232e018}, 
  subpath = 0x2333a00}

T_PathKey每个pathkey(排序列)都对应了一个T_EquivalenceClass,T_EquivalenceClass中记录了排序的具体信息。

{ type = T_PathKey, 
  pk_eclass = 0x232bf88, 
  pk_opfamily = 1976, 
  pk_strategy = 1, 
  pk_nulls_first = false}

T_EquivalenceClass中的ec_members记录了排序列信息Var{varno = 4, varattno = 1}

{ type = T_EquivalenceClass, 
  ec_opfamilies = 0x232ddf8,    // List{ 1976 }
  ec_collation = 0, 
  ec_members = 0x232df48,  // List { EquivalenceMember }
                           // EquivalenceMember{
                           //   type = T_EquivalenceMember, 
                           //   em_expr = 0x232de68,  Var{varno = 4, varattno = 1}
                           //   em_relids = 0x232de48, 
                           //   em_is_const = false, 
                           //   em_is_child = false, 
                           //   em_datatype = 23, 
                           //   em_jdomain = 0x2329158, em_parent = 0x0}
  ec_sources = 0x0, 
  ec_derives = 0x0, 
  ec_relids = 0x232df28,
  ec_has_const = false, 
  ec_has_volatile = false, 
  ec_broken = false, 
  ec_sortref = 1, 
  ec_min_security = 4294967295, 
  ec_max_security = 0, 
  ec_merged = 0x0}

生成排序节点后的计划:

  • sort节点的target是四列,虽然sql只写了三列,但有一列是排序需要的,也会加到pathtarget中。
    在这里插入图片描述

3 实例:【简单join】【排序非投影列】【投影列中有volatile函数】

drop table student;
create table student(sno int primary key, sname varchar(10), ssex int);
insert into student values(1, 'stu1', 0);
insert into student values(2, 'stu2', 1);
insert into student values(3, 'stu3', 1);
insert into student values(4, 'stu4', 0);

drop table course;
create table course(cno int primary key, cname varchar(10), tno int);
insert into course values(20, 'meth', 10);
insert into course values(21, 'english', 11);

drop table teacher;
create table teacher(tno int primary key, tname varchar(10), tsex int);
insert into teacher values(10, 'te1', 1);
insert into teacher values(11, 'te2', 0);

drop table score;
create table score (sno int, cno int, degree int);
create index idx_score_sno on score(sno);
insert into score values (1, 20, 100);
insert into score values (1, 21, 89);
insert into score values (2, 20, 99);
insert into score values (2, 21, 90);
insert into score values (3, 20, 87);
insert into score values (3, 21, 20);
insert into score values (4, 20, 60);
insert into score values (4, 21, 70);


explain verbose
SELECT STUDENT.sname, random(), SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
ORDER BY COURSE.cno;
                                         QUERY PLAN
--------------------------------------------------------------------------------------------
 Result  (cost=3.44..3.56 rows=8 width=21)
   Output: student.sname, random(), score.degree, course.cno
   ->  Sort  (cost=3.44..3.46 rows=8 width=13)
         Output: student.sname, score.degree, course.cno
         Sort Key: course.cno
         ->  Hash Left Join  (cost=2.14..3.32 rows=8 width=13)
               Output: student.sname, score.degree, course.cno
               Inner Unique: true
               Hash Cond: (score.cno = course.cno)
               ->  Hash Right Join  (cost=1.09..2.21 rows=8 width=13)
                     Output: student.sname, score.degree, score.cno
                     Inner Unique: true
                     Hash Cond: (score.sno = student.sno)
                     ->  Seq Scan on public.score  (cost=0.00..1.08 rows=8 width=12)
                           Output: score.sno, score.cno, score.degree
                     ->  Hash  (cost=1.04..1.04 rows=4 width=9)
                           Output: student.sname, student.sno
                           ->  Seq Scan on public.student  (cost=0.00..1.04 rows=4 width=9)
                                 Output: student.sname, student.sno
               ->  Hash  (cost=1.02..1.02 rows=2 width=4)
                     Output: course.cno
                     ->  Seq Scan on public.course  (cost=0.00..1.02 rows=2 width=4)
                           Output: course.cno

3.1 grouping_planner→make_one_rel生成的RelOptInfo→reltarget

make_one_rel前:

准备连接的RelOptInfo在simple_rel_array数组中,这里关注下三个RelOptInfo的reltarget:

(gdb) plist root->simple_rel_array[1]->reltarget->exprs
$67 = 2
$68 = {ptr_value = 0x3083218, int_value = 50868760, oid_value = 50868760, xid_value = 50868760}
$69 = {ptr_value = 0x30ab8b8, int_value = 51034296, oid_value = 51034296, xid_value = 51034296}
(gdb) p root->simple_rte_array[1]->relid
$70 = 16564
root→simple_rel_array[i]simple_rel_array[i]→reltarget->exprsrelid
1varno = 1, varattno = 2, vartype = 104316564 student.sname
1varno = 1, varattno = 1, vartype = 2316564 student.sno
2varno = 2, varattno = 3, vartype = 2316579 score.degree
2varno = 2, varattno = 1, vartype = 2316579 score.cno
2varno = 2, varattno = 2, vartype = 2316579 score.sno
4varno = 4, varattno = 1, vartype = 2316569 course.cno
SELECT STUDENT.sname, random(), SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
ORDER BY COURSE.cno;

make_one_rel生成后:

final_rel->reltarget->exprs
1varno = 1, varattno = 2, vartype = 1043投影第1列:STUDENT.sname
2varno = 2, varattno = 3, vartype = 23投影第3列:SCORE.degree
3varno = 4, varattno = 1, vartype = 23排序列:COURSE.cno

3.2 grouping_planner→make_sort_input_target规律v函数生成排序target

final_target = create_pathtarget(root, root->processed_tlist);拿到的final_target:

final_targetVar / FuncExpr指向列sortgrouprefs
final_target->exprs->elements[0]varno = 1, varattno = 2, vartype = 1043STUDENT.sname0
final_target->exprs->elements[1]funcid = 1598, funcresulttype = 701random()0
final_target->exprs->elements[2]varno = 2, varattno = 3, vartype = 23SCORE.degree0
final_target->exprs->elements[3]varno = 4, varattno = 1, vartype = 23COURSE.cno1

make_sort_input_target拿到的sort_input_target,过滤掉了random列:

sort_input_targetVar / FuncExpr指向列sortgrouprefs
sort_input_target->exprs->elements[0]varno = 1, varattno = 2, vartype = 1043STUDENT.sname0
sort_input_target->exprs->elements[1]varno = 2, varattno = 3, vartype = 23SCORE.degree0
sort_input_target->exprs->elements[2]varno = 4, varattno = 1, vartype = 23COURSE.cno1

实例2中,apply_scanjoin_target_to_paths会先挂投影节点,后面的create_ordered_paths在创建顶层的排序节点,为什么这里的投影节点在最上层?因为有volatile函数在,需要先排序,在到投影节点上计算random函数

3.3 grouping_planner→apply_scanjoin_target_to_paths

		final_target = create_pathtarget(root, root->processed_tlist);
		...
		sort_input_target = make_sort_input_target(...);
		...
		grouping_target = sort_input_target;
		...
		scanjoin_target = grouping_target;
		...
		scanjoin_targets = list_make1(scanjoin_target);
		...
		scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
			&& equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
		...
		// 1 确定没有SRF  list_length(scanjoin_targets) == 1
		// 2 这里make_one_rel出来的current_rel和上面make_sort_input_target计算出来的投影列一样,都过滤掉了v函数,剩下三列
		// scanjoin_target_same_exprs == true

		scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
			&& equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
		apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets,
									   scanjoin_targets_contain_srfs,
									   scanjoin_target_parallel_safe,

注意:

  1. scanjoin_target->exprs:表示最终结果需要的targetlist。
  2. current_rel->reltarget->exprs:表示当前生成path中带的targetlist。
  3. 生成path的路径需要和scanjoin_target一致,所以进入下面函数判断是否生成投影节点。
  4. 如果相同,scanjoin_target_same_exprs==true,则不生成投影节点。
  5. 如果不同,scanjoin_target_same_exprs==false,则调用create_projection_path传入scanjoin_target,生成投影节点。

在apply_scanjoin_target_to_paths中:

apply_scanjoin_target_to_paths
	...
	...
	foreach(lc, rel->pathlist)
	{
		Path	   *subpath = (Path *) lfirst(lc);

		if (tlist_same_exprs)
			// scanjoin_target->sortgrouprefs = [0, 0, 1] 表示第三列是排序列
			// 因为现在的scanjoin_target(同sort_input_target)中只有三列,投影列1、3和排序列,参考上面sort_input_target表格。
			subpath->pathtarget->sortgrouprefs = scanjoin_target->sortgrouprefs;
		else
		{
			Path	   *newpath;
			newpath = (Path *) create_projection_path(root, rel, subpath,
													  scanjoin_target);
			lfirst(lc) = newpath;
		}
	}

3.4 grouping_planner→create_ordered_paths

继续成成排序node:

grouping_planner
	...
	if (parse->sortClause)
				current_rel = create_ordered_paths(root,
										   current_rel,
										   final_target,
										   final_target_parallel_safe,
										   have_postponed_srfs ? -1.0 :
										   limit_tuples);
  • create_ordered_paths最重要的入参就是final_target,保存了全部的列信息和排序列的位置sortgrouprefs。
  • 注意前面生成path中的reltarget已经过滤了random列,但这里没有过滤,需要全量的信息。
final_targetVar / FuncExpr指向列sortgrouprefs
final_target->exprs->elements[0]varno = 1, varattno = 2, vartype = 1043STUDENT.sname0
final_target->exprs->elements[1]funcid = 1598, funcresulttype = 701random()0
final_target->exprs->elements[2]varno = 2, varattno = 3, vartype = 23SCORE.degree0
final_target->exprs->elements[3]varno = 4, varattno = 1, vartype = 23COURSE.cno1
  1. 注意:这里create_sort_path为hashjoin节点上面加了一层sort节点,sort节点的pathtarget继承了hash节点的pathtarget,也就是三列(没有random函数列)。
  2. 注意:这里的target是上面表格中的final_target,也就是四列(带random函数)。
  3. 加了sort节点后,发现这里不相同,所以开始增加投影列apply_projection_to_path。
create_ordered_paths
	ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL);
	
	foreach(lc, input_rel->pathlist)
		is_sorted = pathkeys_count_contained_in
		if (is_sorted)
			sorted_path = input_path;
		else
			sorted_path = (Path *) create_sort_path(...)

		// 生成sorted_path
		// {type = T_SortPath, pathtype = T_Sort, pathtarget = 三列 }
		
		if (sorted_path->pathtarget != target)
			sorted_path = apply_projection_to_path(root, ordered_rel, sorted_path, target);
		
		// 生成投影列
		// {type = T_ProjectionPath, pathtype = T_Result, pathtarget = 四列 }

最终生成PATH:

SELECT STUDENT.sname, random(), SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
ORDER BY COURSE.cno;

最终效果:
在这里插入图片描述

4 实例:【简单join】【排序volatile函数】【投影列中有volatile函数】

drop table student;
create table student(sno int primary key, sname varchar(10), ssex int);
insert into student values(1, 'stu1', 0);
insert into student values(2, 'stu2', 1);
insert into student values(3, 'stu3', 1);
insert into student values(4, 'stu4', 0);

drop table course;
create table course(cno int primary key, cname varchar(10), tno int);
insert into course values(20, 'meth', 10);
insert into course values(21, 'english', 11);

drop table teacher;
create table teacher(tno int primary key, tname varchar(10), tsex int);
insert into teacher values(10, 'te1', 1);
insert into teacher values(11, 'te2', 0);

drop table score;
create table score (sno int, cno int, degree int);
create index idx_score_sno on score(sno);
insert into score values (1, 20, 100);
insert into score values (1, 21, 89);
insert into score values (2, 20, 99);
insert into score values (2, 21, 90);
insert into score values (3, 20, 87);
insert into score values (3, 21, 20);
insert into score values (4, 20, 60);
insert into score values (4, 21, 70);


explain verbose
SELECT STUDENT.sname, random(), SCORE.degree
FROM STUDENT
LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
ORDER BY random();

                                   QUERY PLAN
--------------------------------------------------------------------------------
 Sort  (cost=2.35..2.37 rows=8 width=17)
   Output: student.sname, (random()), score.degree
   Sort Key: (random())
   ->  Hash Right Join  (cost=1.09..2.23 rows=8 width=17)
         Output: student.sname, random(), score.degree
         Inner Unique: true
         Hash Cond: (score.sno = student.sno)
         ->  Seq Scan on public.score  (cost=0.00..1.08 rows=8 width=12)
               Output: score.sno, score.cno, score.degree
         ->  Hash  (cost=1.04..1.04 rows=4 width=9)
               Output: student.sname, student.sno
               ->  Seq Scan on public.student  (cost=0.00..1.04 rows=4 width=9)
                     Output: student.sname, student.sno

4.1 make_one_rel结果

第一步:拿到RelOptInfo
current_rel = query_planner(root, standard_qp_callback, &qp_extra);

current_rel->reltarget中忽略了random函数:

{ 
  type = T_PathTarget, 
  exprs = 
    {
    	Var{varno = 1, varattno = 2, vartype = 1043}, // STUDENT.sname
    	Var{varno = 2, varattno = 3, vartype = 23}    // SCORE.degree
    }, 
  sortgrouprefs = 0x0 }

4.2 拿到final_target

final_target = create_pathtarget(root, root->processed_tlist);

{
 	type = T_PathTarget, 
 	exprs = 
 	{
 		Var{varno = 1, varattno = 2, vartype = 1043},         // STUDENT.sname
 		FuncExpr {xpr = {type = T_FuncExpr}, funcid = 1598},  // random()
 		Var{varno = 2, varattno = 3, vartype = 23}            // SCORE.degree
 	}, 
 	sortgrouprefs = [0, 1, 0]
}

4.3 构造排序target:make_sort_input_target

sort_input_target = make_sort_input_target(root, final_target, &have_postponed_srfs);

{
	type = T_PathTarget,
	 exprs = 
	 {
 		Var{varno = 1, varattno = 2, vartype = 1043},         // STUDENT.sname
 		FuncExpr {xpr = {type = T_FuncExpr}, funcid = 1598},  // random()
 		Var{varno = 2, varattno = 3, vartype = 23}            // SCORE.degree
	 }, 
	 sortgrouprefs = [0, 1, 0]
}

4.4 apply_scanjoin_target_to_paths增加投影

apply_scanjoin_target_to_paths执行后,增加投影节点:

{ path = {type = T_ProjectionPath, pathtype = T_Result }

4.5 create_ordered_paths后增加排序节点在最顶层

{ path = {type = T_SortPath, pathtype = T_Sort }

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/654095.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

国内信创web中间件生态

国内信创web中间件生态 东方通 官网https://www.tongtech.com/pctype/25.html 宝蓝德 官网https://www.bessystem.com/product/0ad9b8c4d6af462b8d15723a5f25a87d/info?p101 金蝶天燕 官网 https://www.apusic.com/list-117.html 中创 官网http://www.inforbus.com…

小程序使用vant组件库

一:下载组件库 在小程序内npm下载的包 vant组件库官网:快速上手 - Vant Weapp (youzan.github.io) 1)首先有有package.json文件,没有的话则先初始化 即使通过package.json去下载包,也需要有,可以观察下载的包. 2)下载包 3)构建npm包 下载包之后存储在node_modules内,但是我们…

详谈 Java中的list.forEach()和list.stream().forEach() 异同点

涉及的文章链接&#xff1a;ArrayList 循环Remove遇到的坑 一、想总结本篇博客的原因 在日常开发中&#xff0c;需要对集合数据进行或多或少的赋值修改&#xff0c;那么循环赋值或者做一些处理就是最常见的一种操作了&#xff0c;但是用习惯了stream流&#xff0c;所以在循环的…

HQChart使用教程99-K线窗口设置上下间距

HQChart使用教程99-K线窗口设置上下预留间距 指标窗口布局说明设置预留间距数据结构通过Setoption设置通过ChangeIndex设置 HQChart代码地址 指标窗口布局说明 顶部预留间距(3)和底部预留间距(5) 这个部分是算在Y轴坐标上的 设置预留间距 数据结构 HorizontalReserved&#…

Python + adb 实现打电话功能

前言 其实很多年前写过一篇python打电话的功能&#xff0c;链接如下&#xff1a; Python twilio 实现打电话和发短信功能_自动发短信代码-CSDN博客 今天由于工作需要&#xff0c;又用python写了个关于打电话的小工具&#xff0c;主要是通过ADB方式实现的 实现过程 1.先利用…

车机壁纸生成解决方案,定制化服务,满足个性化需求

在数字化与智能化浪潮的推动下&#xff0c;汽车内部设计已不再仅仅满足于基本功能的需求&#xff0c;更追求为用户带来前所未有的视觉享受与沉浸式体验。美摄科技&#xff0c;凭借其在图像生成与处理领域的深厚积累&#xff0c;推出了一款创新的车机壁纸生成解决方案&#xff0…

修改Windows系统hosts文件,解决GitHub国内访问速度慢甚至无法访问的问题

对国内大多数用户&#xff0c;GitHub的访问速度非常慢&#xff0c;甚至是打不开&#xff0c;无法访问。究其原因&#xff0c;多数是GitHub的CDN域名解析&#xff08;DNS&#xff09;遭到了污染或拦截。本文以Windows 10系统为例&#xff0c;通过修改本地hosts文件&#xff0c;解…

电脑可以录音吗?这里有你想要的答案!

在数字化时代&#xff0c;电脑已经成为我们日常生活中不可或缺的工具。除了办公、娱乐等基本功能外&#xff0c;电脑还具备许多实用的辅助功能&#xff0c;其中之一就是录音功能。可是电脑可以录音吗&#xff1f;本文将介绍两种在电脑上录音的方法&#xff0c;希望通过本文的介…

人生二选一:央企就业?美国做博士后?—请看她的抉择

一位30岁的女博士&#xff0c;收到国内央企和德国、美国的博士后邀请函&#xff0c;她该如何选择&#xff1f;知识人网小编推荐这篇文章&#xff0c;为大家解开谜题的同时&#xff0c;也给有同样纠结的学者提供一些启迪。 去年12月底的一个晚上&#xff0c;我收到美国一所高校发…

ubuntu系统开启ssh密码登录

文章目录 前言 一、确认否有ssh服务 二、修改/etc/ssh/sshd_config配置文件 三、重启ssh服务 总结 前言 安装好ubuntu系统后&#xff0c;默认是无法通过密码远程shell连接的&#xff0c;需要修改配置文件。 一、确认否有ssh服务 我这边使用的是ubuntu 22.04 LTS的系统&a…

AirBnb架构简史

2007 年&#xff0c;布莱恩切斯基 (Brian Chesky) 和乔加比亚 (Joe Gabbia) 搬到了旧金山。他们一边想为自己的创业想法筹集资金&#xff0c;一边又需要支付房租。 碰巧的是&#xff0c;当时城里正要举行一个设计会议&#xff0c;这意味着很多设计师都会寻找住处。他们想出了在…

海外仓系统要多少钱?最贵的未必是最好的,性价比高的才是

海外仓系统可以说已经是现在海外仓管理不可或缺的重要工具&#xff0c;然而&#xff0c;很多海外仓企业在选择海外仓系统时最头疼的问题就是不知道到底多少钱才合适。 确实&#xff0c;现在的海外仓系统市场价格体系非常多&#xff0c;几万几十万各种定价都有&#xff0c;让人…

linux父进程fork出子进程后,子进程为何首先需要close文件描述符。

在linux c/c编程时&#xff0c;父进程fork出子进程后&#xff0c;子进程经常第一件事就是close掉所有的文件描述符&#xff1b;为何需要这样做&#xff0c;本文用一个例子进行简单说明。 考虑到一种情况&#xff0c;父进程创建了tcp服务端套接字&#xff0c;并且listen&#x…

redis核心面试题二(实战优化)

文章目录 10. redis配置mysql实战优化[重要]11. redis之缓存击穿、缓存穿透、缓存雪崩12. redis实现分布式session 10. redis配置mysql实战优化[重要] // 最初实现OverrideTransactionalpublic Product createProduct(Product product) {productRepo.saveAndFlush(product);je…

ProxySQL路由策略实现读写分离

目的&#xff1a;配置proxysql路由策略后将不同用户的不同请求路由到不同的节点&#xff0c;实现读写分离 前提条件&#xff1a; 配置表mysql_replication_hostgroups&#xff0c;10为写组&#xff0c;20为读组 mysql_users表中已添加用户writer用户加入10写组&#xff0c;rea…

linux开发之设备树基本语法二

设备树特殊节点,对节点定义别名,chosen节点用来uboot给内核传参 上面的mmc0就是sdmmc0节点的别名 device_type属性 只对cpu节点和memory节点进行描述 自定义属性 这部分自定义,比如定义管脚标号,初始数值等 为什么我们可以在设备树上自己定义属性呢?设备树文件描述的是硬…

AI手语研究数据集;视频转视频翻译和风格化功能如黏土动画;AI检测猫咪行为;开放源码的AI驱动搜索引擎Perplexica

✨ 1: Prompt2Sign 多语言手语数据集&#xff0c;便捷高效用于手语研究。 Prompt2Sign 是一个全面的多语言手语数据集&#xff0c;旨在通过工具自动获取和处理网络上的手语视频。该数据集具有高效、轻量的特点&#xff0c;旨在减少先前手语数据集的不足之处。该数据集目前包含…

Python---Matplotlib(2万字总结)【从入门到掌握】

数据可视化 在完成了对数据的透视之后&#xff0c;可以将数据透视的结果通过可视化的方式呈现出来&#xff0c;简单的说&#xff0c;就是将数据变成漂亮的图表&#xff0c;因为人类对颜色和形状会更加敏感&#xff0c;然后再进一步解读数据背后隐藏的价值。在之前的文章中已经…

gitlab push 代码,密码正确,仍然提示HTTP Basic: Access denied. The provided password

HTTP Basic: Access denied. The provided password or token is incorrect or your account has 2FA enabled and you must use a personal access token instead of a password gitlab 登录账户密码确认正确&#xff0c;登录获取代码仍然提示以上问题&#xff0c;解决方案 …

10、QT—SQLite使用小记1

开发平台&#xff1a;Win10 64位 开发环境&#xff1a;Qt Creator 13.0.0 构建环境&#xff1a;Qt 5.15.2 MSVC2019 64位 构建工具&#xff1a;qmake 在上一篇文章中笔者介绍了sqlite的使用&#xff0c;并提供了一个封装好的文件&#xff0c;这篇文章就针对封装好的文件进行测试…