常用图像分类预训练模型大小及准确度比较

近年来,深度学习技术的发展使得图像分类任务变得越来越容易。预训练模型的出现更是使得图像分类任务变得更加简单和高效。然而,随着预训练模型的数量和大小的增加,我们需要了解每个模型的特点和优缺点,以便更好地选择和使用它们。

在图像分类领域,预训练模型扮演着至关重要的角色。它们不仅可以帮助我们更快地实现图像分类的效果,还可以提高模型的准确性和泛化能力。然而,不同的预训练模型在大小和准确度方面存在差异。本文将对一些常用的图像分类预训练模型进行大小和准确度的比较,以便读者在选择模型时能够更加明确。

一、预训练模型的重要性

预训练模型是通过在大量数据集上进行训练得到的,已经学习到了一些强大且信息丰富的通用的特征表示。这些特征表示可以被用于不同的图像分类任务,通过微调(fine-tuning)的方式,使得模型能够适应特定的任务需求。

使用预训练模型作为起点,通过迁移学习来学习新任务,可以大大加快训练速度,并提高模型的性能。

下图描述了从 K 个分类迁移到 K* 个分类:

二、常用图像分类预训练模型比较

  • Inception 系列

Inception 系列是由 Google 开发的深度卷积神经网络模型,包括 Inception V3 和 Inception V4 等。这些模型在 ImageNet 数据集上取得了很高的准确度。然而,由于模型结构复杂,Inception 系列的预训练模型文件通常较大。例如,Inception V4 的预训练模型文件大小远大于Inception V3。在训练速度方面,Inception V3 通常比 Inception V4 更快。

  • ResNet 系列

ResNet(残差网络)是由微软研究院开发的深度卷积神经网络模型,通过引入残差连接解决了深度神经网络训练过程中的梯度消失问题。ResNet 系列模型在 ImageNet 数据集上取得了很高的准确度,并且由于其结构相对简单,预训练模型文件大小适中。此外,ResNet 系列模型具有很好的泛化能力,可以方便地适配到其他视觉任务中。

  • EfficientNet 系列

EfficientNet 是一种高效的卷积神经网络模型,通过统一调整网络深度、宽度和分辨率来优化模型性能。EfficientNet 系列模型在 ImageNet 数据集上取得了很高的准确度,并且其预训练模型文件大小相对较小。然而,EfficientNet 系列模型在计算量方面较大,可能导致推理速度较慢。

  • MobileNet 系列

MobileNet 是一种轻量级的卷积神经网络模型,专为移动和嵌入式设备设计。MobileNet 系列模型具有较小的预训练模型文件大小,并且推理速度较快。然而,由于其结构相对简单,MobileNet 系列模型在准确度方面可能稍逊于其他大型模型。

  • Vision Transformer 系列

近年来,Transformer 模型在自然语言处理领域取得了巨大成功,例如 BERT、RoBERTa 等模型。最近,研究者们开始将 Transformer 模型应用于计算机视觉领域,提出了一种新的模型:Vision Transformer(ViT)。

ViT 是一种基于 Transformer 架构的图像分类模型。它将图像分割成固定大小的 patch,然后将每个 patch 视为一个 token,输入到 Transformer 编码器中。ViT 模型使用自注意力机制来捕捉图像中的长期依赖关系,从而实现图像分类任务。

它具有全局感知、平移不变和参数效率等优点。然而,ViT 模型也具有计算成本高和需要大量数据等缺点,是一种非常有前途的图像分类模型。

三、模型大小与准确度权衡

在选择图像分类预训练模型时,需要权衡模型大小和准确度。对于需要快速推理和较小存储空间的场景(如移动应用),可以选择轻量级的模型如 MobileNet 系列。而对于需要较高准确度的场景(如医疗诊断),可以选择大型模型如 ResNet 系列或 EfficientNet 系列。

这些网络已经在一百多万张图像上进行了训练,并能够将图像分类到 1000 个对象类别中,输入是 RGB 图像,输出是预测的标签和得分。

下表是图像分类模型的准确性和大小的比较:

NetworkSize (MB)ClassesAccuracy %
googlenet27100066.25
squeezenet5.2100055.16
alexnet227100054.1
resnet1844100069.49
resnet5096100074.46
resnet101167100075.96
mobilenetv213100070.44
vgg16515100070.29
vgg19535100070.42
inceptionv389100077.07
inceptionresnetv2209100079.62
xception85100078.2
darknet1978100074
darknet53155100076.46
densenet20177100075.85
shufflenet5.4100063.73
nasnetmobile20100073.41
nasnetlarge332100081.83
efficientnetb020100074.72
ConvMixer7.710-
Vison Transformer (Large-16)1100100085.59
Vison Transformer (Base-16)331.4100085.49
Vison Transformer (Small-16)84.7100083.73
Vison Transformer (Tiny-16)22.2100078.22

四、小结

本文介绍了常用图像分类预训练模型的大小和准确度比较。

不同的预训练模型在大小和准确度方面存在差异,需要根据具体需求选择合适的模型。在选择模型时,我们需要权衡模型大小和准确度,以便在满足性能要求的同时实现快速推理和较小的存储空间需求。

                                                                                         老徐,2024/5/28

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/653604.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

国内半导体龙头企业的自动化转型之旅

在当今高速发展的科技时代,半导体行业正迎来前所未有的挑战与机遇。位于此浪潮前端的,是国内一家领先的半导体集成电路封装测试企业。凭借其规模和创新实力,该公司不仅在国内市场名列前茅,更是在全球半导体行业中占据了一席之地。…

.DFS.

DFS 全称为Depth First Search,中文称为深度优先搜索。 这是一种用于遍历或搜索树或图的算法,其思想是: 沿着每一条可能的路径一个节点一个节点地往下搜索, 直到路径的终点,然后再回溯,直到所有路径搜索完为止。 DFS俗…

排序算法——上

一、冒泡排序: 1、冒泡排序算法的思想 我们从左边开始把相邻的两个数两两做比较,当一个元素大于右侧与它相邻的元素时,交换它们之间位置;反之,它们之间的位置不发生变化。冒泡排序是一种稳定的排序算法。 2、代码实现…

可燃气体报警器检测周期:如何合理设定以满足安全需求?

可燃气体报警器作为工业安全和生产环境中不可或缺的安全防护设备,其准确性、稳定性和及时响应性对于防止火灾和爆炸事故具有重要意义。 因此,合理设定并严格执行可燃气体报警器的检测周期,是确保安全与可靠运行的核心环节。 一、检测周期的重…

远程户外监控组网方案,工业4G路由器ZR2000

户外监控无人值守4G工业路由器组网应用涉及工业自动化、数据传输和远程监控的重要领域。在户外没有光纤的情况下,想要让监控或传感器等设备联网,仅需一台4G工业路由器即可解决。以下是关于远程监控户外组网的详细分析与应用: 物联网应用场景 …

Python 机器学习 基础 之 模型评估与改进 【评估指标与评分】的简单说明

Python 机器学习 基础 之 模型评估与改进 【评估指标与评分】的简单说明 目录 Python 机器学习 基础 之 模型评估与改进 【评估指标与评分】的简单说明 一、简单介绍 二、评估指标与评分 1、牢记最终目标 2、二分类指标 1)错误类型 2)不平衡数据集…

MySQL触发器实战:自动执行的秘密

欢迎来到我的博客,代码的世界里,每一行都是一个故事 🎏:你只管努力,剩下的交给时间 🏠 :小破站 MySQL触发器实战:自动执行的秘密 前言触发器的定义和作用触发器的定义和作用触发器的…

质量源于设计QbD培训的内容有哪些?

质量源于设计QbD培训的内容丰富而深入,旨在帮助企业深入理解并应用QbD理念,提升产品质量和客户满意度。以下是质量源于设计QbD培训的主要内容: 首先,培训将详细介绍QbD的基本概念、核心内容和实施流程。QbD是一种集成的方法&#…

大学搜题软件音乐类?分享三个支持答案和解析的工具 #微信#媒体

高效的学习工具可以帮助我们提高记忆力和理解能力,使知识更加深入人心。 1.彩虹搜题 这是个微信公众号 一款专门供全国大学生使用的查题神器!致力于帮助大学生解决学习上的难题,涵盖了大学生学习所需的学习资料。 下方附上一些测试的试题及答案 1、甲、乙合伙开…

python办公自动化——(二)替换PPT文档中图形数据-柱图

效果: 数据替换前 : 替换数据后: 实现代码 import collections.abc from pptx import Presentation from pptx.util import Cm,Pt import pyodbc import pandas as pd from pptx.chart.data import CategoryChartData…

OKR 实践:来自一位信息技术部主管的成功秘诀

OKR 实践:来自一位信息技术部主管的成功秘诀 为什么选择OKR 公司信息技术部为38个各地分公司、12,000名员工的IT需求提供服务。庞大而多样的客户群常常使我们的团队分散,许多团队都在各自为政,以个案为基础解决问题,而不是采用企业…

抖店的注意事项,2024新版,照做即可!

我是王路飞。 如果你想做抖店,但还没开通抖店的话,那这篇文章算你刷着了。 先别着急开店,把这篇文章看完,再开店也不迟,能帮你少走很多开店、做店阶段的弯路。 内容来源于【电商王路飞】 第一个注意事项&#xff0c…

基于瑞萨RA6M5的自控衣橱

1. 主控转接板原理图和PCB设计 2. 屏幕界面设计 3. 程序设计 4. QT设计 QT设计,读取MQTT数据,在QT上显示衣橱内部的温度,湿度情况,且能够控制衣橱的开关门,开关灯等。 5. 实物演示 瑞萨

Spring Boot中如何查询PGSQL分表后的数据

数据库用的pgsql,在表数据超过100w条的时候执行定时任务进行了分表,分表后表名命名为原的表名后面拼接时间,如原表名是card_device_trajectory_info,分表后拼接时间后得到card_device_trajectory_info_20240503,然后分…

CTF| 格式化字符串漏洞

格式化字符串漏洞是PWN题常见的考察点,仅次于栈溢出漏洞。漏洞原因:程序使用了格式化字符串作为参数,并且格式化字符串为用户可控。其中触发格式化字符串漏洞函数主要是printf、sprintf、fprintf、prin等C库中print家族的函数 0x01 格式化字符…

什么是死锁,如何解决?

一、问题解析 死锁是指两个或两个以上的进程(或线程)在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些…

kettle组件之java代码,快速上手必看

我们先了解不同于java代码的kettle的一些方法 1、getRow(); 获取每一行数据,循环读数据;返回的是Object[]数组 2、get(Fields.in,"字段名"); 获取具体的某个字段的名称 3、get(Fields.in,"字段名").getString(r); …

100个AI Agent应用场景合集

人工智能代理(AI Agent)的发展正在以前所未有的速度改变我们的生活和工作方式。从日常生活的小事到企业级的复杂决策,AI Agent 的应用场景广泛且多样。 以下是 100 个 AI Agent 的创新应用场景,它们展示了 AI 技术如何渗透到我们生…

AI与空间设计的碰撞?

遇到难题不要怕!厚德提问大佬答! 厚德提问大佬答9 你是否对AI绘画感兴趣却无从下手?是否有很多疑问却苦于没有大佬解答带你飞?从此刻开始这些问题都将迎刃而解!你感兴趣的话题,厚德云替你问,你解…

【Python】 Python中__slots__的妙用与深入解析

基本原理 在Python中,__slots__是一个特殊的类属性,它可以用来限制一个类可以拥有的属性数量。这个特性在Python中非常有用,尤其是在创建大量实例时,可以显著减少内存的使用。 通常,Python的类会为每个实例自动创建一…