【JavaEE精炼宝库】多线程(3)线程安全 | synchronized

目录

一、线程安全

1.1 经典线程不安全案例:

1.2 线程安全的概念:

1.3 线程不安全的原因:

1.3.1 案例刨析:

1.3.2 线程不安全的名词解释:

1.3.3 Java 内存模型 (JMM):

1.3.4 解决线程不安全问题:

二、synchronized 关键字

2.1 synchronized 的特性:

2.1.1 互斥:

2.1.2 可重入:

2.2 synchronized 使用示例:

2.2.1 修饰代码块:

2.2.2 直接修饰普通方法:

2.2.3 修饰静态方法:

2.3 Java 标准库中的线程安全类:


一、线程安全

1.1 经典线程不安全案例:

线程安全是多线程中最核心的部分,因此线程安全也是难点和面试的考点,可以说只要写多线程代码,基本上都会涉及到。下面我就举一个经典的线程不安全案例,友友们来观察一下线程不安全。(注意要把自增的次数写大一点,因为如果次数太小,线程 2 还没启动线程 1 就已经运行结束了,所以看不到线程不安全的情况)。

public class Main {
    private static int count = 0;
    public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread(() -> {
            //对 count 变量进行自增 5w次
            for (int i = 0; i < 50000; i++) {
                count++;
            }
        });
        Thread t2 = new Thread(() -> {
            //对 count 变量进行自增 5w次
            for (int i = 0; i < 50000; i++) {
                count++;
            }
        });
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        // 预期值为 10w
        System.out.println(count);
    }
}

案例的预期值应为 10w。

案例的结果如下:

如果友友们,把这个案例自己拿起来跑,会发现每次的运行的结果都有差异,不符合我们的预期,显然出现了线程不安全的问题。

1.2 线程安全的概念:

线程安全的确切定义是复杂的,但我们可以这样认为:如果在多线程环境下代码运行的结果是符合我们预期的,即在单线程环境应该的结果,则说这个程序是线程安全的。

1.3 线程不安全的原因:

1.3.1 案例刨析:

如果我们将上述的案例部分改为下面红色方框(可以解决问题,但不是一种好的方法,因为这样写就无法利用到多线程的优势,更优的方法在下面的 synchronized 中会详细介绍),那么运行的结果就符合我们的预期了。

 

其实就是把多线程并发执行改为串行执行。 那么我们就可以确定是因为多线程才导致出现这个现象。上面不安全案例的执行过程大致如下:()中的数字表示执行顺序。如果对工作内存和主内存不了解的话,在下面的 Java 内存模型中有解释。

之所以会出现少加 5 的情况是因为,两个线程在进行抢占式执行。

那么为什么多线程会出现这种现象呢?

线程调度是随机的,这是线程安全问题的罪魁祸首,随机调度使⼀个程序在多线程环境下,执行顺序存在很多的变数。程序猿必须保证在任意执行顺序下,代码都能正常工作。

1.3.2 线程不安全的名词解释:

• 原子性:

• 什么是原子性?

我们把⼀段代码想象成⼀个房间,每个线程就是要进入这个房间的人。如果没有任何机制保证,A进入房间之后,还没有出来,B 是不是也可以进入房间,打断 A 在房间里的隐私。这个就是不具备原子性。一条 Java 语句不一定是原子的,也不一定只是一条指令。比如我们刚才看到 count++,其实是由三步操作组成的:(1)从内存把数据读到 CPU。(2)进行数据更新。(3)把数据写回到 CPU。

• 不保证原子性会给多线程带来什么问题?

如果一个线程正在对一个变量操作,中途其他线程插入进来了,如果这个操作被打断了,结果就可能是错误的。(这点也和线程的抢占式调度密切相关。如果线程不是 "抢占" 的,就算没有原子性,也问题不大)。

• 可见性:

可见性指,一个线程对共享变量值的修改,能够及时地被其他线程看到。

• 指令重排序:

什么是代码重排序,假如:一段代码是这样的:(1)去前台取下 U 盘。(2)去教室写 10 分钟作业。(3)去前台取下快递。

如果是在单线程情况下,JVM、CPU指令集会对其进行优化,比如,按 1->3->2的方式执行,也是没问题,可以少跑一次前台。这种叫做指令重排序。

编译器对于指令重排序的前提是 "保持逻辑不发生变化"。这⼀点在单线程环境下比较容易判断,但是在多线程环境下就没那么容易了,多线程的代码执行复杂程度更高,编译器很难在编译阶段对代码的执行效果进行预测,因此激进的重排序很容易导致优化后的逻辑和之前不等价。重排序是一个比较复杂的话题,涉及到 CPU 以及编译器的一些底层工作原理,此处不做过多讨论。

1.3.3 Java 内存模型 (JMM):

Java 虚拟机规范中定义了 Java 内存模型。目的是屏蔽掉各种硬件和操作系统的内存访问差异,以实现让 Java 程序在各种平台下都能达到一致的并发效果。

• 线程之间的共享变量存在主内存(Main Memory)

• 每一个线程都有自己的 "工作内存" (Working Memory)

• 当线程要读取一个共享变量的时候,会先把变量从主内存拷贝到工作内存,再从工作内存读取数据。

• 当线程要修改一个共享变量的时候,也会先修改工作内存中的副本,再同步回主内存。

由于每个线程有自己的工作内存,这些工作内存中的内容相当于同一个共享变量的 "副本"。此时修改线程 1 的工作内存中的值,线程 2 的工作内存不一定会及时变化。

此时引入了两个问题:

• 为啥要整这么多内存?

实际并没有这么多 "内存"。这只是 Java 规范中的一个术语,是属于 "抽象" 的叫法。所谓的 "主内存" 才是真正硬件角度的 "内存"。而所谓的 "工作内存",则是指 CPU 的寄存器和高速缓存。

• 为啥要这么麻烦的拷来拷去?

因为 CPU 访问自身寄存器的速度以及高速缓存的速度,远远超过访问内存的速度(快了 3 - 4 个数量级,也就是几千倍,上万倍)。

那么接下来问题又来了,既然访问寄存器速度这么快,还要内存干啥?

答案就是一个字:贵。

1.3.4 解决线程不安全问题:

下面这几点是线程不安全问题的原因,友友们一定要记住。

1. 线程在系统中是随机调度的,抢占式执行的。(线程不安全的罪魁祸首,万恶之源)。

2. 当前代码中,多个线程同时修改同一个变量。

3. 线程针对变量的修改操作,不是“原子”的。

4. 内存可见性问题,引起的线程不安全。

5. 指令重排序,引起的线程不安全。

我们从原因入手,解决问题。

原因 1:我们无法干预,这是操作系统自己分配的,我们干预不了。

原因 2:是一个切入点,但是在 Java 中,这样的做法不是很普适(因为当前代码,就是要多线程修改同一个变量),只是针对一些特定场景是可以的。

原因 3:这是解决线程安全问题,最普适的方案。我们就从原因 3 入手。

我们可以通过一些操作,把上述一系列 “非原子” 的操作,打包成一个 “原子” 操作。就是下面要介绍的 synchronized 加锁操作。

下面给出的案例大家看看就行,关于 synchronized 后续会详细介绍。

public class Main {
    private static int count = 0;
    public static void main(String[] args) throws InterruptedException {
        Object lock = new Object();
        Thread t1 = new Thread(() -> {
            //对 count 变量进行自增 5w次
            for (int i = 0; i < 50000; i++) {
                synchronized(lock){
                    count++;
                }
            }
        });
        Thread t2 = new Thread(() -> {
            //对 count 变量进行自增 5w次
            for (int i = 0; i < 50000; i++) {
                synchronized(lock){
                    count++;
                }
            }
        });
        t1.start();
        t1.join();
        t2.start();
        t2.join();
        // 预期值为 10w
        System.out.println(count);
    }
}

案例结果:可以看到符合我们的预期值,说明线程不安全问题被成功解决。

二、synchronized 关键字

大家一定要去多练习一下 synchronized 的读法,和拼写。因为面试的时候,说出来要让面试官听得懂。注意:这是个 Java 的关键字。(注意不是方法,里面的功能是 JVM 内部实现的)。

利用 synchronized 我们就可以把花括号里面的非原子操作,打包成原子。从而不允许别的线程 “插队”。

2.1 synchronized 的特性:

2.1.1 互斥:

synchronized 会起到互斥效果,某个线程执行到某个对象的 synchronized 中时,其他线程如果也执行到同⼀个对象 synchronized 就会阻塞等待。

• 加锁:t1 加上锁之后,t2 也尝试进行加锁,就会阻塞等待(系统内核控制),在 Java 中就能看到 BLOCKED状态,进入 synchronized 修饰的代码块,相当于加锁。

• 解锁:直到 t1 解锁之后,t2 才有可能(可能还有别的线程也在等待)拿到锁,退出synchronized 修饰的代码块,相当于解锁。

synchronized 用的锁是存在 Java 对象头里的。

• 理解"阻塞等待":

针对每一把锁,操作系统内部都维护了一个等待队列。当这个锁被某个线程占有的时候,其他线程尝试进行加锁,就加不上了,就会阻塞等待,⼀直等到之前的线程解锁之后,由操作系统唤醒一个新的线程,再来获取到这个锁。

注意:

• 上一个线程解锁之后,下一个线程并不是立即就能获取到锁,而是要靠操作系统来 "唤醒"。这也就 是操作系统线程调度的一部分工作。

• 假设有 A B C 三个线程,线程 A 先获取到锁,然后 B 尝试获取锁,然后 C 再尝试获取锁,此时 B 和 C 都在阻塞队列中排队等待,但是当 A 释放锁之后,虽然 B 比 C 先来的,但是 B 不⼀定就能获取到锁,而是是和 C 重新竞争,并不遵守先来后到的规则。

synchronized的底层是使用操作系统的 mutex lock实现的。

2.1.2 可重入:

synchronized 同步块(花括号里面内容)对同一条线程来说是可重入的,不会出现自己把自己锁死的情况。

• 理解 "把自己锁死":

⼀个线程没有释放锁,然后又尝试再次对同一对象加锁。按照之前对于锁的设定,第二次加锁的时候,就会阻塞等待,直到第一次的锁被释放,才能获取到第二个锁,但是释放第⼀个锁也是由该线程来完成,结果这个线程已经躺平了,啥都不想干了,也就无法进行解锁操作。这时候就会死锁。

这样的锁称为:不可重入锁

Java 中的 synchronized 是可重入锁,因此没有上面的问题。 

案例如下:

public class demo1 {
    public static void main(String[] args) {
        Object lock = new Object();
        Thread t = new Thread(() -> {
            synchronized(lock){
                synchronized(lock){
                    System.out.println("hello t");
                }
            }
            System.out.println("t.end");
        });
        t.start();
    }
}

 案列结果演示如下:

那么 synchronized 是如何完成可重入锁的这种机制呢?

在可重入锁的内部,包含了 "线程持有者" "计数器" 两个信息。

• 如果某个线程加锁的时候,发现锁已经被人占用,但是恰好占用的正是自己,那么仍然可以继续获取到锁,并让计数器自增。 

• 解锁的时候计数器递减为 0 的时候,才真正释放锁。(才能被别的线程获取到)

2.2 synchronized 使用示例:

在 Java 中任何一个对象都可以作为加锁的对象(Java 中特定独立的设定,其他语言中C++,Go,Python....)都是只有极少数特定的对象可以用来加锁。

synchronized 后面带上()里面就是写的 “锁对象”。

注意:

锁对象的用途,有且只有一个,就是用来区分两个线程是否是针对同一个对象加锁。如果是,就会出现锁竞争 / 锁冲突 / 互斥,就会引起阻塞等待。如果不是,就不会出现锁竞争,也就不会阻塞等待。和对象具体是啥类型,和它里面有啥属性,有啥方法,接下来是否要操作这个对象.....统统没有任何关系,不要自己脑补出其他的功能。

2.2.1 修饰代码块:

明确指定锁哪个对象。

• 锁任意对象:

我们前面所写的都是这种写法。

public class SynchronizedDemo {
    private Object locker = new Object();
    public void method() {
        synchronized (locker) {
        }
    }
}

• 锁当前对象:

public class SynchronizedDemo {
    public void method() {
        synchronized (this) {
        }
    }
}

2.2.2 直接修饰普通方法:

当加锁的生命周期和方法的生命周期,是一样的,这个时候,就可以直接把 synchronized 写到方法上。(可以和 public 位置互换)这个写法就相当于是一进入方法就针对 this 加锁。

锁的 SynchronizedDemo 对象 。

public class SynchronizedDemo {
    public synchronized void methond() {
    }
}

上面的这两种写法等价。

2.2.3 修饰静态方法:

锁的 SynchronizedDemo 类的对象(一个类可以有多个对象,但是只有一个类对象)

public class SynchronizedDemo {
    public synchronized static void method() {
    }
}

如果我们要把 synchronized 放到方法里面,但是 static 里面不能使用 this。如果使用会出现如下错误。 

解决方法:我们可以利用反射来拿到类对象。

例如:

public class SynchronizedDemo {
    public static void method() {
        synchronized (Counter.class){
        }
    }
}

到这相信友友们就能理解上面利用 synchronized 解决线程不安全问题。

我们重点要理解,synchronized 锁的是什么。两个线程竞争同一把锁,才会产生阻塞等待。两个线程分别尝试获取两把不同的锁,不会产生竞争。

2.3 Java 标准库中的线程安全类:

Java 标准库中很多都是线程不安全的。这些类可能会涉及到多线程修改共享数据,又没有任何加锁措施。

例如:ArrayList、LinkedList、HashMap、TreeMap、HashSet、TreeSet、StringBuilder等。

但是还有一些是线程安全的,使用了一些锁机制来控制。

Vector(不推荐使用) 、HashTable (不推荐使用) 、ConcurrentHashMap 、 StringBuffer等。

还有的虽然没有加锁,但是不涉及 "修改",仍然是线程安全的。例如:String。

结语:

其实写博客不仅仅是为了教大家,同时这也有利于我巩固知识点,和做一个学习的总结,由于作者水平有限,对文章有任何问题还请指出,非常感谢。如果大家有所收获的话还请不要吝啬你们的点赞收藏和关注,这可以激励我写出更加优秀的文章。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/653073.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

成都爱尔眼科巫雷院长教你在家“自查”白内障

检查以下自己&#xff08;或者父母、亲属&#xff09;是否有发生以下情况&#xff1a; 视物模糊视物模糊是白内障的主要症状。2、眼前暗影白内障早期&#xff0c;有的患者眼前会出现阴影&#xff0c;这是因为晶状体发生浑浊。晶状体混浊在眼前固定位置&#xff0c;患者会“看到…

重生之 SpringBoot3 入门保姆级学习(02、打包部署)

重生之 SpringBoot3 入门保姆级学习&#xff08;02、打包部署&#xff09; 1.6 打包插件1.7 测试 jar 包1.8 application.properties 的相关配置 1.6 打包插件 官网链接 https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html#getting-starte…

Android15 Beta更新速览

Android15 Beta更新速览 前台服务变更 前台服务使应用保持活动状态&#xff0c;以便它们可以执行关键且对用户可见的操作&#xff0c;通常以牺牲电池寿命为代价。在 Android 15 Beta 2 中&#xff0c;dataSync 和 mediaProcessing 前台服务类型现在具有约 6 小时的超时时间&a…

【Flowable 7】学习笔记 01 - 初始化数据库表创建流程(源码)

文章目录 前言版本说明配置1、引擎配置初始化2、SQL 执行创建表2.0、创建表概览&#xff08;创建表数目&#xff1a;38&#xff09;2.1、基础组件表创建&#xff08;以 common 组件为例&#xff09;2.2、changelog 组件表创建&#xff08;基于 liquibase&#xff09;2.3、Engin…

swiftui基础组件Image加载图片,以及记载gif动图示例

想要在swiftui中展示图片&#xff0c;可以使用Image这个组件&#xff0c;这个组件可以加载本地图片和网络图片&#xff0c;也可以调整图片大小等设置。先大概看一下Image的方法有哪些可以用。 常用的Image属性 1.调整图像尺寸&#xff1a; 使用 resizable() 方法使图像可调整…

ComfyUI工作流网站

https://openart.ai/home https://comfyworkflows.com/ https://civitai.com/

5G工厂长啥样

5G工厂是一种新型的工业互联网基础设施&#xff0c;利用5G为代表的新一代信息通信技术集成&#xff0c;打造新型工业互联网基础设施。在5G工厂中&#xff0c;自动化和智能化设备广泛使用&#xff0c;高度互联的工厂网络得以实现&#xff0c;远程监控和管理成为可能&#xff0c;…

220V转5V电源芯片,为您的微控制器、继电器和WiFi/蓝牙模块提供动力

220V转5V电源芯片&#xff0c;为您的微控制器、继电器和WiFi/蓝牙模块提供动力标题&#xff1a; 在我们生活的数字化世界中&#xff0c;电源芯片的重要性不容忽视。今天&#xff0c;我们要向您介绍一款适用于各种应用的电源芯片&#xff1a;220V转5V电源芯片。该芯片可从交流电…

Qt 项目(CMake)支持多国语言(2024/05)

目录 1.在工程手动创建languages文件夹2.修改CMakeLists.txt3.在qml上随便添加一下文字内容4.执行CMake 参考:Qt 项目(CMake)设置国际化支持 1.在工程手动创建languages文件夹 2.修改CMakeLists.txt set(TS_FILES"${CMAKE_SOURCE_DIR}/languages/aidi_zh_CN.ts"&qu…

享受当下,还是留待未来?一项fMRI与眼动追踪技术的联合研究

摘要 时间贴现(temporal discount)是指个体对奖励的估计会随着时间流逝而下降的心理现象。具体而言&#xff0c;当获得奖励的时间以日期(日期条件&#xff1b;例如&#xff0c;2023年6月8日)而不是延迟(延迟条件&#xff1b;例如&#xff0c;30天)呈现时&#xff0c;贴现率较低…

(二刷)代码随想录第15天|层序遍历 226.翻转二叉树 101.对称二叉树2

层序遍历 10 102. 二叉树的层序遍历 - 力扣&#xff08;LeetCode&#xff09; 代码随想录 (programmercarl.com) 综合代码&#xff1a; class Solution{public List<List<Integer>> resList new ArrayList<List<Integer>>();public List<List<…

springboot项目部署到linux服务器

springboot后端 修改前 修改后 重新生成war包 war上传到linux的tomcat的webapps下 其他环境配置和macOS大差不差 Tomcat安装使用与部署Web项目的三种方法_tomcat部署web项目-CSDN博客

如何高效测试防火墙的NAT64与ALG应用协议转换能力

在本文开始介绍如何去验证防火墙&#xff08;DUT&#xff09;支持NAT64 ALG应用协议转换能力之前&#xff0c;我们先要简单了解2个比较重要的知识点&#xff0c;即&#xff0c;NAT64和ALG这两个家伙到底是什么&#xff1f; 网络世界中的“翻译官” - NAT64技术 简而言之&…

紫光展锐前沿探索 | 满足未来6G多差异化应用场景的技术体系思考

在6G架构/系统设计中&#xff0c;紫光展锐提出了未来6G空口“一体多翼”的技术体系概念&#xff0c;即“Big-Lite Multi-RAT”。本文将详细对该技术体系展开介绍。 “一体多翼”技术体系通过 “体”&#xff08;Big RAT&#xff09;和“翼”&#xff08;Lite RAT&#xff09;的…

Visual Studio中调试信息格式参数:/Z7、/Zi、/ZI参数

一般的调试信息都保存在pdb文件中。 Z7参数表示这些调试信息保存到OBJ目标文件中&#xff0c;这样的好处是不需要单独分发PDB文件给下游。Zi就是把所有的调试信息都保存在pdb文件中&#xff0c;以缩小发布文件的大小。ZI和Zi类似&#xff0c;但是增加了热重载的能力&#xff1…

电火灶是燃气灶吗?这“火”又是怎么回事?

电火灶并非传统的燃气灶&#xff0c;它们在能源使用和工作原理上有着显著的区别。电火灶&#xff0c;又名电焰灶或电燃灶&#xff0c;属于新能源厨房灶具行列&#xff0c;它使用清洁的电能作为唯一能源&#xff0c;而不是依赖天然气或液化气等燃料。 具体来说&#xff0c;电火灶…

本地部署Whisper实现语言转文字

文章目录 本地部署Whisper实现语言转文字1.前置条件2.安装chocolatey3.安装ffmpeg4.安装whisper5.测试用例6.命令行用法7.本地硬件受限&#xff0c;借用hugging face资源进行转译 本地部署Whisper实现语言转文字 1.前置条件 环境windows10 64位 2.安装chocolatey 安装chocol…

力扣刷题--1528. 重新排列字符串【简单】

题目描述 给你一个字符串 s 和一个 长度相同 的整数数组 indices 。 请你重新排列字符串 s &#xff0c;其中第 i 个字符需要移动到 indices[i] 指示的位置。 返回重新排列后的字符串。 示例 1&#xff1a; 输入&#xff1a;s “codeleet”, indices [4,5,6,7,0,2,1,3] 输…

创建你的RedTeam基础架构

随着RedTeaming行业的发展&#xff0c;我们对构建可靠环境的需求也越来越高。至关重要的是要拥有维护健壮的基础架构的能力&#xff0c;该基础架构要保证一旦出现问题就可以重新创建&#xff0c;更重要的是&#xff0c;我们需要确保环境在部署时不会出现问题。 今天&#xff0c…

2024最新版本激活Typora,1.8.10.0版本可用

​实测可用日期为&#xff1a;2024-05-28 目前最新版本 1.8.10.0 也是可以实现激活的 注&#xff1a;免修改注册表、不用修改时间&#xff0c;更不需要破解补丁 01、下载&安装 Typora 文件 从官网下载最新版本的 Typora&#xff0c;并安装 或者阿里云盘&#xff1a; htt…