linux 中 fd 申请和释放管理(两级 bitmap)

linux 中 fd 的几点理解_linux fd-CSDN博客

通过上边的文章,我们可以知道,在 linux 中,fd 有以下几点需要了解:

(1)fd 表示进程打开的文件,是进程级别的资源,不是系统级别的资源

(2)struct task_struct 在内核中用于描述一个进程,其中打开的文件使用 fd table 来描述

(3)在用户态看 linux,一些皆文件

(4)一个进程可以打开的文件个数是有限制的,使用 ulimit -a 可以查看

那么在 linux 中,当我们打开一个文件的时候,会返回一个 fd,fd 是一种资源,在内核中是怎么维护这些资源的呢 ?当关闭一个文件的时候,会释放这个 fd,释放的时候又是怎么释放的呢 ?

可以想象,如果让我们自己来实现的话,我们会选择一个 bitmap 来维护 fd 的被使用情况。系统默认情况下,一个进程可以打开的文件个数是 1024,我们就需要维护一个长度为 1024 的 bitmap。如下图所示,表示一个长度为 1024 的 bitmap,bitmap 的下标从 0 到 1023 表示 1024 个 fd,bitmap 中的内容 1 表示 fd 被使用,0 表示 fd 没有被使用。下图表示 fd 0、1、2、501 被使用,其它的 fd 没有被使用。

那么当我们打开一个文件的时候,是怎么分配 fd 的呢,是每次都要遍历 bitmap,从中选择一个空闲的 fd 来返回吗 ?这种方式是最基础的方法,当然是可行的。缺点在于,每次都要遍历 bitmap,如果 bitmap 0~1000 都已经被使用,1001 没有没使用,这个时候我们就需要做 1000 次无用的查询,效率比较低。当我们关闭文件,释放 fd 的时候,是比较好理解的,直接使用 fd 作为下标,找到对应的 bit,直接将该 bit 设置为 0 即可。

1 fd 上下边界

fd 最小是 0,最大可以使用 ulimit -a 来查看。默认情况下,系统允许一个进程最多打开 1024 个文件,所以 fd 最大值为 1023。所以默认情况下,进程内的 fd 的取值范围是 [0, 1023]。

2 申请 fd

2.1 数据结构 struct fdtable 和函数 find_next_fd

struct fdtable 中有以下几个成员和 fd 的维护有关。

struct fdtable {
    // 进程能打开的文件个数的最大值
	unsigned int max_fds;
    ...
    // bitmap,一个 bit 表示一个 fd
	unsigned long *open_fds;
    // bitmap,一个 bit 表示 BITS_PER_LONG 个 fd
	unsigned long *full_fds_bits;
    ...
};

在函数 find_next_fd 中,空闲 fd 的查找分了两步来完成:

(1)先在 full_fds_bits 中查找,如果文件个数最多是 1024 个,在 64 位机器上 long 类型长度市是 64 个 bit。那么 full_fds_bit 的长度是 16(1024/64),第 0 bit 就能代表 open_fds 中的第 0 到第 63bit,第 1bit 能代表 open_fds 中的第 64 到 127bit,以此类推。只要第 64 到 127bit 有空闲的 fd,哪怕只有 1 个,那么在 full_fds_bit 中的第 1 bit 也会标志为空闲。

(2)在第一步中已经在 full_fds_bits 找到了空闲的 bit,这个 bit 能把查找范围缩小到 64 个 bit 范围之内。然后第二步中从 full_fds_bits 中查找具体空闲的 bit。

static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
{
	unsigned int maxfd = fdt->max_fds;
	unsigned int maxbit = maxfd / BITS_PER_LONG;
	unsigned int bitbit = start / BITS_PER_LONG;

	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
	if (bitbit > maxfd)
		return maxfd;
	if (bitbit > start)
		start = bitbit;
	return find_next_zero_bit(fdt->open_fds, maxfd, start);
}

使用两级 bitmap 来查找空闲的 fd,对性能做了优化。

如果使用一级 bitmap,那么查找次数平均下来要 1024 次。

使用两级 bitmap,查找次数平均下来是 16 + 64 = 80 次。16 是第一级 map 查找的次数,64 是第二级 bitmap 查找的次数。

3 释放 fd

释放 fd 相对来说好理解,直接使用 fd 做下标找到 bitmap 中对应的 bit,然后将 bit 清除即可。关闭 fd 的时候,会通过函数 __put_unused_fd() 最终调用 导函数 __clear_open_fd()。

static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
{
	__clear_bit(fd, fdt->open_fds);
	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/651242.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【鱼眼镜头11】Kannala-Brandt模型和Scaramuzza多项式模型区别,哪个更好?

Kannala-Brandt模型和Scaramuzza多项式模型在描述鱼眼相机畸变时都有其特定的数学表示和应用,但它们之间存在一些区别。以下是对两者区别的分点表示和归纳: 数学表示: Kannala-Brandt模型:它假设图像光心到投影点的距离和角度的多…

字符串和字符串函数(1)

前言: 字符串在C语言中比较特别,没有单另的字符串类型,想要初始化字符串必须用字符变量的数组初始化,但是在C语言标准库函数中提供了大量能对字符串进行修改的函数,比如说可以实现字符串的的拷贝,字符串的追…

直播预告:TinyVue 组件库实战解析,提升组件库构建技能!

在复杂的编码世界里,大家总希望能够寻找更高效、更简洁的解决方案来优化工作流程,提升开发效率。在5月28日晚7点 OpenTiny B站直播间,OpenTiny 非常荣幸地为大家带来一场关于 TinyVue 组件库实战分享的直播。届时,TinyVue 组件库成…

【java程序设计期末复习】chapter4 类和对象

类和对象 编程语言的几个发展阶段 (1)面向机器语言 计算机处理信息的早期语言是所谓的机器语言,使用机器语言进行程序设计需要面向机器来编写代码,即需要针对不同的机器编写诸如0101 1100这样的指令序列。 (2&#x…

优优嗨聚集团:快速摆脱个人债务束缚的秘诀

在快节奏的现代生活中,个人债务问题时常困扰着许多人。面对日益增长的债务压力,如何快速有效地处理成为众多人的迫切需求。本文将为你提供一套实用的债务清零攻略,帮助你摆脱债务的束缚,重获财务自由。 一、认清债务现状&#xff…

[NISACTF 2022]easyssrf、[NISACTF 2022]level-up

[NISACTF 2022]easyssrf 使用dirsearch扫描后没发现什么路径 尝试访问127.0.0.1,成功了 访问127.0.0.1/flag.php提示有文件/fl4g 使用file://协议读取文件/fl4g,提示除此页面外还有一个ha1x1ux1u.php页面。 file:///fl4g 直接访问,发现GET…

WDW-20B微机控制人造板试验机

一.设备外观照片: 项目简介: 微机控制电子式万能试验机是专门针对高等院校、各种金属、非金属科研厂家及国家级质检单位而设计的高端微机控制电子式万能试验机、计算机系统通过全数字控制器,经调速系统控制伺服电机转动&#xff…

JavaWeb_HTTP协议

HTTP: 概念: HTTP(Hyper Text Transfer Protocal),超文本传输协议,规定了浏览器和服务器之间数据传输的规则。 特点: 1.基于TCP协议:面向连接,安全 2.基于请求-响应模型…

【Linux】升级GCC(版本9.3),补充:binutils

GCC:GNU Compiler Collection 。编译器,几乎Linux中所有程序(包括内核)都是gcc编译的,包括libc。 gcc不仅仅是编译器,gcc也有很多库,依赖libc。gcc和libc互相依赖。 GCC官网:GCC, …

如何注册Claude3?解决Claude3无海外手机号接收验证码的问题以及如何订阅Claude Pro

原文链接:如何注册 Claude3?解决 Claude3 无海外手机号接收验证码的问题以及如何订阅 Claude Pro 前言 Claude3已经出来有一段时间了,大家有没有体验过呢?不过从目前来看,Anthropic公司总共推出了3个模型&#xff1…

Java项目:基于SSM框架实现的学生就业管理系统分前后台(ssm+B/S架构+源码+数据库+毕业论文+开题报告)

一、项目简介 本项目是一套基于SSM框架实现的学生就业管理系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、功能…

【Chapter5】死锁与饥饿,计算机操作系统教程,第四版,左万利,王英

文章目录 1.1 什么是死锁1.2 死锁的类型1.2.1 竞争资源引起的死锁1.2.2 进程间通信引起的死锁1.2.3 其他原因引起的死锁 1.3 死锁产生必要条件1.4 死锁的处理策略1.5 死锁的预防1.5.1 破坏资源独占条件1.5.2 破坏不可剥夺条件1.5.3 破坏保持申请条件1.5.4 破坏循环等待条件 1.6…

ip反解域名-python脚本

import sys import socket from requests.packages.urllib3.contrib import pyopenssl def domain_dns(ip, port, timeout0.09): try: # 创建一个 socket sock socket.create_connection((ip, port), timeouttimeout) # 设置超时 sock.settimeout(timeout) # 加载 SSL 证书 x5…

第十七届全国大学生信息安全竞赛创新实践能力赛初赛部分复现

Misc 神秘文件 1.根据提示信息,均需要从ppt中提取信息 2.在ppt的属性中发现一串密文和key,解密之后得到第一部分,根据提示Bifid chipher,为双歧密码解密,使用Bifid Cipher Decode解码 3.在第五张幻灯片,…

neo4j docker安装使用,py2neo python包使用

参考:https://neo4j.com/docs/operations-manual/current/docker/introduction/ 运行: docker run --publish7474:7474 --publish7687:7687 neo4j查看: http://192***ip:7474 username/password 都是 neo4j/neo4j 简单案例 创建例子&am…

基于Docker部署GitLab环境搭建

文件在D:\E\学习文档子目录压缩\专项进阶,如ngnix,webservice,linux,redis等\docker 建议虚拟机内存2G以上 1.下载镜像文件 docker pull beginor/gitlab-ce:11.0.1-ce.0 注意:一定要配置阿里云的加速镜像 创建GitLab 的配置 (etc) 、 日志 (log) 、数…

【CTF Web】CTFShow web2 Writeup(SQL注入+PHP+UNION注入)

web2 1 管理员赶紧修补了漏洞&#xff0c;这下应该没问题了吧&#xff1f; 解法 注意到&#xff1a; <!-- flag in id 1000 -->但是 or 被拦截了。 if(preg_match("/or|\/i",$id)){die("id error");}使用UNION注入&#xff1a; ?id1 union sele…

矩阵区域和 ---- 二维前缀和

题目链接 题目: 分析: 题目的题意是:矩阵和的问题, 应该使用二维前缀和来解决 先预处理一个前缀和, 但是题目中下标是从0开始的, 为了不处理边界情况, 我么预处理出来的矩阵, 要从下标为1的位置开始, 所以前缀和矩阵的大小为m1 * n1预处理前缀和:dp[i][j] 表示: 从[1,1] 位置…

Android 动效整理

Android自定义SeekBar&#xff0c;滑动时弹出气泡指示器显示进度 安卓开发中非常炫的效果集合_android 开发 向右上角收起炫酷动态效果-CSDN博客 https://github.com/shenghuntianlang/Android-Views?tabreadme-ov-file#decentbanner 以前收藏了很多文章&#xff0c;但是过…

服务器端口转发,服务器端口转发的作用、好处与坏处

服务器端口转发&#xff0c;服务器端口转发的作用、好处与坏处。 服务器端口转发是一种关键的网络技术&#xff0c;它在网络安全和通信中发挥着不可替代的作用。其主要功能是将来自一个端口的网络流量转发到另一个端口&#xff0c;从而实现内外网之间的流量交互。这种技术通常…