基于EBAZ4205矿板的图像处理:10gamma变换

基于EBAZ4205矿板的图像处理:10gamma变换

项目全部文件

会上传项目全部文件,如果没传,可以私信催我一下,最近太忙了

先看效果

在这里插入图片描述

请添加图片描述
我的项目中的gamma的变换系数为2.2,是会让图像整体变暗的,看右图说明我的gamma变换模块生效了。

算法

gamma映射是一种简单的、常见的图像处理方法,它能够拓展图像的低亮度区域的灰度级数,让图像的低亮度区域呈现更多的细节,但同时也会让图像的整体亮度变暗,有利有弊。
算法的公式为: y = A*x^g
其中,x为像素点的像素灰度值输入,y为像素点的像素灰度值变换结果,A为归一化系数,g为gamma变换系数。
下图是不同系数的gamma变换曲线。
在这里插入图片描述

算法的FPGA部署

首先,gamma变换是个指数函数。用FPGA来运算指数函数相当耗时,所以为了提升速度,我们采用查表法,既将某个gamma变换系数下的0~255灰度等级的所有对应变换结果算出来,然后在需要映射时,直接查表即可。

BD

在这里插入图片描述

项目代码

图像处理模块

module video_processor(
    (* X_INTERFACE_IGNORE = "true" *) input         frame_clk,    //cmos 像素时钟
    (* X_INTERFACE_IGNORE = "true" *) input         frame_rst_n,  
    
    //预处理图像
    (* X_INTERFACE_IGNORE = "true" *) input         pre_vsync, //预处理图像场同步信号
    (* X_INTERFACE_IGNORE = "true" *) input [23:0]  pre_data,  //预处理图像数据
    (* X_INTERFACE_IGNORE = "true" *) input         pre_href,  //预处理图像数据有效信号
    (* X_INTERFACE_IGNORE = "true" *) input         pre_frame_ce, //预处理图像时钟使能信号

        
    //处理后图像
    (* X_INTERFACE_IGNORE = "true" *) output        pos_vsync, //处理后图像场同步信号
    (* X_INTERFACE_IGNORE = "true" *) output [23:0] pos_data,  //处理后图像数据
    (* X_INTERFACE_IGNORE = "true" *) output        pos_href, //处理后图像数据有效信号
    (* X_INTERFACE_IGNORE = "true" *) output        pos_frame_ce //处理后图像时钟使能信号  
);

wire [7:0] gray_data ;
wire [7:0] post_gray_data ;

rgb2gray  u_rgb2gray(
    .cmos_frame_clk     (frame_clk      ),
    .cmos_rstn          (frame_rst_n    ),//同步复位
    .cmos_frame_vsync   (pre_vsync      ),
    .cmos_frame_data    (pre_data       ),
    .cmos_frame_href    (pre_href       ),
    .cmos_frame_ce      (pre_frame_ce   ),

    .dataout_frame_vsync(pos_vsync     ),
    .dataout_frame_data (gray_data      ),
    .dataout_frame_href (pos_href      ),
    .dataout_frame_ce   (pos_frame_ce  )
);

assign pos_data = {3{post_gray_data}};
Curve_Gamma_2P2 u_Curve_Gamma_2P2(
    .Pre_Data (gray_data),
    .Post_Data(post_gray_data)
);
endmodule 

色彩转换模块

`timescale 1ns / 1ps
module rgb2gray(
    
(* X_INTERFACE_IGNORE = "true" *)  input           cmos_frame_vsync,
(* X_INTERFACE_IGNORE = "true" *)  input [23:0]    cmos_frame_data,
(* X_INTERFACE_IGNORE = "true" *)  input           cmos_frame_href,

(* X_INTERFACE_IGNORE = "true" *)  input           cmos_frame_clk,
(* X_INTERFACE_IGNORE = "true" *)  input           cmos_rstn,//同步复位
(* X_INTERFACE_IGNORE = "true" *)  input           cmos_frame_ce,

(* X_INTERFACE_IGNORE = "true" *)  output          dataout_frame_vsync,
(* X_INTERFACE_IGNORE = "true" *)  output [7:0]    dataout_frame_data,
// (* X_INTERFACE_IGNORE = "true" *)  output [23:0]    dataout_frame_data,
(* X_INTERFACE_IGNORE = "true" *)  output          dataout_frame_href,
(* X_INTERFACE_IGNORE = "true" *)  output          dataout_frame_ce
    );
    // Y = 0.299R +0.587G + 0.114B
    // Y = (77 *R + 150*G + 29 *B)>>8
    reg [15:0] r_gray1;
    reg [15:0] g_gray1;
    reg [15:0] b_gray1;
    reg [15:0] y1;
    reg [7:0] y2;
    reg [2:0] dataout_frame_vsync_r;
    reg [2:0] dataout_frame_href_r;
    reg [2:0] dataout_frame_ce_r;


    always@(posedge cmos_frame_clk)begin
        if(!cmos_rstn)begin
            r_gray1 <= 8'h00;
            g_gray1 <= 8'h00;
            b_gray1 <= 8'h00;
        end
        else begin
            r_gray1 <= cmos_frame_data[23:16]  * 8'd77 ;
            g_gray1 <= cmos_frame_data[15:8]   * 8'd150;
            b_gray1 <= cmos_frame_data[7:0]    * 8'd29 ;
        end
    end

    always@(posedge cmos_frame_clk)begin
        if(!cmos_rstn)begin
            y1 <= 16'h0000;
        end
        else begin
            y1 <= r_gray1 + g_gray1 + b_gray1;
        end
    end

    always@(posedge cmos_frame_clk)begin
        if(!cmos_rstn)begin
            y2 <= 8'h0000;
        end
        else begin
            y2 <= y1[15:8];
        end
    end

    

    always@(posedge cmos_frame_clk)begin
        if(!cmos_rstn)begin
            dataout_frame_ce_r      <= 3'b000;
            dataout_frame_vsync_r   <= 3'b000;
            dataout_frame_href_r    <= 3'b000;
        end
        else begin
            dataout_frame_ce_r      <= {dataout_frame_ce_r[1:0]     ,cmos_frame_ce};
            dataout_frame_vsync_r   <= {dataout_frame_vsync_r[1:0]  ,cmos_frame_vsync};
            dataout_frame_href_r    <= {dataout_frame_href_r[1:0]   ,cmos_frame_href};
        end
    end
    // assign dataout_frame_data = {y2,y2,y2};
    assign dataout_frame_data = y2;
    assign dataout_frame_ce = dataout_frame_ce_r[2];
    assign dataout_frame_vsync = dataout_frame_vsync_r[2];
    assign dataout_frame_href = dataout_frame_href_r[2];


endmodule

gamma映射模块

//Curve of Gamma = 2.2
module Curve_Gamma_2P2
(
   input		[7:0]	Pre_Data,
   output	reg	[7:0]	Post_Data
);

always@(*)
begin
	case(Pre_Data)
	8'h00 : Post_Data = 8'h00; 
	8'h01 : Post_Data = 8'h00; 
	8'h02 : Post_Data = 8'h00; 
	8'h03 : Post_Data = 8'h00; 
	8'h04 : Post_Data = 8'h00; 
	8'h05 : Post_Data = 8'h00; 
	8'h06 : Post_Data = 8'h00; 
	8'h07 : Post_Data = 8'h00; 
	8'h08 : Post_Data = 8'h00; 
	8'h09 : Post_Data = 8'h00; 
	8'h0A : Post_Data = 8'h00; 
	8'h0B : Post_Data = 8'h00; 
	8'h0C : Post_Data = 8'h00; 
	8'h0D : Post_Data = 8'h00; 
	8'h0E : Post_Data = 8'h00; 
	8'h0F : Post_Data = 8'h01; 
	8'h10 : Post_Data = 8'h01; 
	8'h11 : Post_Data = 8'h01; 
	8'h12 : Post_Data = 8'h01; 
	8'h13 : Post_Data = 8'h01; 
	8'h14 : Post_Data = 8'h01; 
	8'h15 : Post_Data = 8'h01; 
	8'h16 : Post_Data = 8'h01; 
	8'h17 : Post_Data = 8'h01; 
	8'h18 : Post_Data = 8'h01; 
	8'h19 : Post_Data = 8'h02; 
	8'h1A : Post_Data = 8'h02; 
	8'h1B : Post_Data = 8'h02; 
	8'h1C : Post_Data = 8'h02; 
	8'h1D : Post_Data = 8'h02; 
	8'h1E : Post_Data = 8'h02; 
	8'h1F : Post_Data = 8'h02; 
	8'h20 : Post_Data = 8'h03; 
	8'h21 : Post_Data = 8'h03; 
	8'h22 : Post_Data = 8'h03; 
	8'h23 : Post_Data = 8'h03; 
	8'h24 : Post_Data = 8'h03; 
	8'h25 : Post_Data = 8'h04; 
	8'h26 : Post_Data = 8'h04; 
	8'h27 : Post_Data = 8'h04; 
	8'h28 : Post_Data = 8'h04; 
	8'h29 : Post_Data = 8'h05; 
	8'h2A : Post_Data = 8'h05; 
	8'h2B : Post_Data = 8'h05; 
	8'h2C : Post_Data = 8'h05; 
	8'h2D : Post_Data = 8'h06; 
	8'h2E : Post_Data = 8'h06; 
	8'h2F : Post_Data = 8'h06; 
	8'h30 : Post_Data = 8'h06; 
	8'h31 : Post_Data = 8'h07; 
	8'h32 : Post_Data = 8'h07; 
	8'h33 : Post_Data = 8'h07; 
	8'h34 : Post_Data = 8'h08; 
	8'h35 : Post_Data = 8'h08; 
	8'h36 : Post_Data = 8'h08; 
	8'h37 : Post_Data = 8'h09; 
	8'h38 : Post_Data = 8'h09; 
	8'h39 : Post_Data = 8'h09; 
	8'h3A : Post_Data = 8'h0A; 
	8'h3B : Post_Data = 8'h0A; 
	8'h3C : Post_Data = 8'h0B; 
	8'h3D : Post_Data = 8'h0B; 
	8'h3E : Post_Data = 8'h0B; 
	8'h3F : Post_Data = 8'h0C; 
	8'h40 : Post_Data = 8'h0C; 
	8'h41 : Post_Data = 8'h0D; 
	8'h42 : Post_Data = 8'h0D; 
	8'h43 : Post_Data = 8'h0D; 
	8'h44 : Post_Data = 8'h0E; 
	8'h45 : Post_Data = 8'h0E; 
	8'h46 : Post_Data = 8'h0F; 
	8'h47 : Post_Data = 8'h0F; 
	8'h48 : Post_Data = 8'h10; 
	8'h49 : Post_Data = 8'h10; 
	8'h4A : Post_Data = 8'h11; 
	8'h4B : Post_Data = 8'h11; 
	8'h4C : Post_Data = 8'h12; 
	8'h4D : Post_Data = 8'h12; 
	8'h4E : Post_Data = 8'h13; 
	8'h4F : Post_Data = 8'h13; 
	8'h50 : Post_Data = 8'h14; 
	8'h51 : Post_Data = 8'h14; 
	8'h52 : Post_Data = 8'h15; 
	8'h53 : Post_Data = 8'h16; 
	8'h54 : Post_Data = 8'h16; 
	8'h55 : Post_Data = 8'h17; 
	8'h56 : Post_Data = 8'h17; 
	8'h57 : Post_Data = 8'h18; 
	8'h58 : Post_Data = 8'h19; 
	8'h59 : Post_Data = 8'h19; 
	8'h5A : Post_Data = 8'h1A; 
	8'h5B : Post_Data = 8'h1A; 
	8'h5C : Post_Data = 8'h1B; 
	8'h5D : Post_Data = 8'h1C; 
	8'h5E : Post_Data = 8'h1C; 
	8'h5F : Post_Data = 8'h1D; 
	8'h60 : Post_Data = 8'h1E; 
	8'h61 : Post_Data = 8'h1E; 
	8'h62 : Post_Data = 8'h1F; 
	8'h63 : Post_Data = 8'h20; 
	8'h64 : Post_Data = 8'h21; 
	8'h65 : Post_Data = 8'h21; 
	8'h66 : Post_Data = 8'h22; 
	8'h67 : Post_Data = 8'h23; 
	8'h68 : Post_Data = 8'h23; 
	8'h69 : Post_Data = 8'h24; 
	8'h6A : Post_Data = 8'h25; 
	8'h6B : Post_Data = 8'h26; 
	8'h6C : Post_Data = 8'h27; 
	8'h6D : Post_Data = 8'h27; 
	8'h6E : Post_Data = 8'h28; 
	8'h6F : Post_Data = 8'h29; 
	8'h70 : Post_Data = 8'h2A; 
	8'h71 : Post_Data = 8'h2B; 
	8'h72 : Post_Data = 8'h2B; 
	8'h73 : Post_Data = 8'h2C; 
	8'h74 : Post_Data = 8'h2D; 
	8'h75 : Post_Data = 8'h2E; 
	8'h76 : Post_Data = 8'h2F; 
	8'h77 : Post_Data = 8'h30; 
	8'h78 : Post_Data = 8'h31; 
	8'h79 : Post_Data = 8'h31; 
	8'h7A : Post_Data = 8'h32; 
	8'h7B : Post_Data = 8'h33; 
	8'h7C : Post_Data = 8'h34; 
	8'h7D : Post_Data = 8'h35; 
	8'h7E : Post_Data = 8'h36; 
	8'h7F : Post_Data = 8'h37; 
	8'h80 : Post_Data = 8'h38; 
	8'h81 : Post_Data = 8'h39; 
	8'h82 : Post_Data = 8'h3A; 
	8'h83 : Post_Data = 8'h3B; 
	8'h84 : Post_Data = 8'h3C; 
	8'h85 : Post_Data = 8'h3D; 
	8'h86 : Post_Data = 8'h3E; 
	8'h87 : Post_Data = 8'h3F; 
	8'h88 : Post_Data = 8'h40; 
	8'h89 : Post_Data = 8'h41; 
	8'h8A : Post_Data = 8'h42; 
	8'h8B : Post_Data = 8'h43; 
	8'h8C : Post_Data = 8'h44; 
	8'h8D : Post_Data = 8'h45; 
	8'h8E : Post_Data = 8'h46; 
	8'h8F : Post_Data = 8'h47; 
	8'h90 : Post_Data = 8'h49; 
	8'h91 : Post_Data = 8'h4A; 
	8'h92 : Post_Data = 8'h4B; 
	8'h93 : Post_Data = 8'h4C; 
	8'h94 : Post_Data = 8'h4D; 
	8'h95 : Post_Data = 8'h4E; 
	8'h96 : Post_Data = 8'h4F; 
	8'h97 : Post_Data = 8'h51; 
	8'h98 : Post_Data = 8'h52; 
	8'h99 : Post_Data = 8'h53; 
	8'h9A : Post_Data = 8'h54; 
	8'h9B : Post_Data = 8'h55; 
	8'h9C : Post_Data = 8'h57; 
	8'h9D : Post_Data = 8'h58; 
	8'h9E : Post_Data = 8'h59; 
	8'h9F : Post_Data = 8'h5A; 
	8'hA0 : Post_Data = 8'h5B; 
	8'hA1 : Post_Data = 8'h5D; 
	8'hA2 : Post_Data = 8'h5E; 
	8'hA3 : Post_Data = 8'h5F; 
	8'hA4 : Post_Data = 8'h61; 
	8'hA5 : Post_Data = 8'h62; 
	8'hA6 : Post_Data = 8'h63; 
	8'hA7 : Post_Data = 8'h64; 
	8'hA8 : Post_Data = 8'h66; 
	8'hA9 : Post_Data = 8'h67; 
	8'hAA : Post_Data = 8'h69; 
	8'hAB : Post_Data = 8'h6A; 
	8'hAC : Post_Data = 8'h6B; 
	8'hAD : Post_Data = 8'h6D; 
	8'hAE : Post_Data = 8'h6E; 
	8'hAF : Post_Data = 8'h6F; 
	8'hB0 : Post_Data = 8'h71; 
	8'hB1 : Post_Data = 8'h72; 
	8'hB2 : Post_Data = 8'h74; 
	8'hB3 : Post_Data = 8'h75; 
	8'hB4 : Post_Data = 8'h77; 
	8'hB5 : Post_Data = 8'h78; 
	8'hB6 : Post_Data = 8'h79; 
	8'hB7 : Post_Data = 8'h7B; 
	8'hB8 : Post_Data = 8'h7C; 
	8'hB9 : Post_Data = 8'h7E; 
	8'hBA : Post_Data = 8'h7F; 
	8'hBB : Post_Data = 8'h81; 
	8'hBC : Post_Data = 8'h82; 
	8'hBD : Post_Data = 8'h84; 
	8'hBE : Post_Data = 8'h85; 
	8'hBF : Post_Data = 8'h87; 
	8'hC0 : Post_Data = 8'h89; 
	8'hC1 : Post_Data = 8'h8A; 
	8'hC2 : Post_Data = 8'h8C; 
	8'hC3 : Post_Data = 8'h8D; 
	8'hC4 : Post_Data = 8'h8F; 
	8'hC5 : Post_Data = 8'h91; 
	8'hC6 : Post_Data = 8'h92; 
	8'hC7 : Post_Data = 8'h94; 
	8'hC8 : Post_Data = 8'h95; 
	8'hC9 : Post_Data = 8'h97; 
	8'hCA : Post_Data = 8'h99; 
	8'hCB : Post_Data = 8'h9A; 
	8'hCC : Post_Data = 8'h9C; 
	8'hCD : Post_Data = 8'h9E; 
	8'hCE : Post_Data = 8'h9F; 
	8'hCF : Post_Data = 8'hA1; 
	8'hD0 : Post_Data = 8'hA3; 
	8'hD1 : Post_Data = 8'hA5; 
	8'hD2 : Post_Data = 8'hA6; 
	8'hD3 : Post_Data = 8'hA8; 
	8'hD4 : Post_Data = 8'hAA; 
	8'hD5 : Post_Data = 8'hAC; 
	8'hD6 : Post_Data = 8'hAD; 
	8'hD7 : Post_Data = 8'hAF; 
	8'hD8 : Post_Data = 8'hB1; 
	8'hD9 : Post_Data = 8'hB3; 
	8'hDA : Post_Data = 8'hB5; 
	8'hDB : Post_Data = 8'hB6; 
	8'hDC : Post_Data = 8'hB8; 
	8'hDD : Post_Data = 8'hBA; 
	8'hDE : Post_Data = 8'hBC; 
	8'hDF : Post_Data = 8'hBE; 
	8'hE0 : Post_Data = 8'hC0; 
	8'hE1 : Post_Data = 8'hC2; 
	8'hE2 : Post_Data = 8'hC4; 
	8'hE3 : Post_Data = 8'hC5; 
	8'hE4 : Post_Data = 8'hC7; 
	8'hE5 : Post_Data = 8'hC9; 
	8'hE6 : Post_Data = 8'hCB; 
	8'hE7 : Post_Data = 8'hCD; 
	8'hE8 : Post_Data = 8'hCF; 
	8'hE9 : Post_Data = 8'hD1; 
	8'hEA : Post_Data = 8'hD3; 
	8'hEB : Post_Data = 8'hD5; 
	8'hEC : Post_Data = 8'hD7; 
	8'hED : Post_Data = 8'hD9; 
	8'hEE : Post_Data = 8'hDB; 
	8'hEF : Post_Data = 8'hDD; 
	8'hF0 : Post_Data = 8'hDF; 
	8'hF1 : Post_Data = 8'hE1; 
	8'hF2 : Post_Data = 8'hE3; 
	8'hF3 : Post_Data = 8'hE5; 
	8'hF4 : Post_Data = 8'hE7; 
	8'hF5 : Post_Data = 8'hEA; 
	8'hF6 : Post_Data = 8'hEC; 
	8'hF7 : Post_Data = 8'hEE; 
	8'hF8 : Post_Data = 8'hF0; 
	8'hF9 : Post_Data = 8'hF2; 
	8'hFA : Post_Data = 8'hF4; 
	8'hFB : Post_Data = 8'hF6; 
	8'hFC : Post_Data = 8'hF8; 
	8'hFD : Post_Data = 8'hFB; 
	8'hFE : Post_Data = 8'hFD; 
	8'hFF : Post_Data = 8'hFF; 
	endcase
end

endmodule

vitis代码

//作者:抢公主的大魔王
//功能:gamma映射
//日期:24.5.27
//版本:1v0
//联系方式:2376635586@qq.com
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "xil_types.h"
#include "xil_cache.h"
#include "xparameters.h"
#include "xgpiops.h"
#include "xscugic.h"
#include "xil_exception.h"
#include "xplatform_info.h"
#include "xaxivdma.h"
#include "xaxivdma_i.h"
#include "display_ctrl_hdmi/display_ctrl.h"
#include "vdma_api/vdma_api.h"
#include "emio_sccb_cfg/emio_sccb_cfg.h"
#include "ov5640/ov5640_init.h"
#include "sleep.h"

//宏定义
#define DYNCLK_BASEADDR  	XPAR_AXI_DYNCLK_0_BASEADDR  //动态时钟基地址
#define VDMA_ID          	XPAR_AXIVDMA_0_DEVICE_ID    //VDMA器件ID
#define DISP_VTC_ID      	XPAR_VTC_0_DEVICE_ID        //VTC器件ID
//#define THRESHOLD_BASEADDR 	XPAR_AXICTRLTHRESHOLD_0_S00_AXI_BASEADDR

#define EMIO_SCL_NUM 54
#define EMIO_SDA_NUM 55
#define KEY1 56 //T19
#define KEY2 57 //P19
#define KEY3 58 //U20
#define KEY4 59 //U19
#define KEY5 60 //V20
#define LED1 61 //H18
#define LED2 62 //K17
#define LED3 63 //E19

#define GPIO_DEVICE_ID  	XPAR_XGPIOPS_0_DEVICE_ID
XGpioPs Gpio;
#define GPIO_BANK	XGPIOPS_BANK0  /* Bank 0 of the GPIO Device */
#define INTC_DEVICE_ID		XPAR_SCUGIC_SINGLE_DEVICE_ID
#define GPIO_INTERRUPT_ID	XPAR_XGPIOPS_0_INTR

//全局变量
//frame buffer的起始地址
unsigned int const frame_buffer_addr = (XPAR_PS7_DDR_0_S_AXI_BASEADDR
										+ 0x1000000);
//u8 binary_threshold = 128;
XAxiVdma     vdma;
DisplayCtrl  dispCtrl;
VideoMode    vd_mode;

static XScuGic Intc; /* The Instance of the Interrupt Controller Driver */


static void IntrHandler(void *CallBackRef, u32 Bank, u32 Status)
{
	XGpioPs *Gpio_cb = (XGpioPs *)CallBackRef;
	if (XGpioPs_IntrGetStatusPin(Gpio_cb, KEY1)){
		//binary_threshold++;
		//Xil_Out32(THRESHOLD_BASEADDR, binary_threshold);
		//xil_printf("The threshold has been changed\n\rThe threshold now is %d\n\r",binary_threshold);
		XGpioPs_IntrClearPin(Gpio_cb, KEY1);
	}
	else if (XGpioPs_IntrGetStatusPin(Gpio_cb, KEY4)){
		//binary_threshold--;
		//Xil_Out32(THRESHOLD_BASEADDR, binary_threshold);
		//xil_printf("The threshold has been changed\n\rThe threshold now is %d\n\r",binary_threshold);
		XGpioPs_IntrClearPin(Gpio_cb, KEY4);
	}
	else if (XGpioPs_IntrGetStatusPin(Gpio_cb, KEY2)){
		//binary_threshold = binary_threshold+10;
		//Xil_Out32(THRESHOLD_BASEADDR, binary_threshold);
		//xil_printf("The threshold has been changed\n\rThe threshold now is %d\n\r",binary_threshold);
		XGpioPs_IntrClearPin(Gpio_cb, KEY2);
	}
	else if (XGpioPs_IntrGetStatusPin(Gpio_cb, KEY5)){
		//binary_threshold = binary_threshold-10;
		//Xil_Out32(THRESHOLD_BASEADDR, binary_threshold);
		//xil_printf("The threshold has been changed\n\rThe threshold now is %d\n\r",binary_threshold);
		XGpioPs_IntrClearPin(Gpio_cb, KEY5);
	}
	else if (XGpioPs_IntrGetStatusPin(Gpio_cb, KEY3)){
		//binary_threshold = 128;
		//Xil_Out32(THRESHOLD_BASEADDR, binary_threshold);
		//xil_printf("The threshold has been reset\n\rThe threshold now is %d\n\r",binary_threshold);
		XGpioPs_IntrClearPin(Gpio_cb, KEY3);
	}
	XGpioPs_WritePin(&Gpio, LED1, !XGpioPs_ReadPin(&Gpio, LED1));
}



void SetupInterruptSystem(XScuGic *GicInstancePtr, XGpioPs *Gpio,
				u16 GpioIntrId){

	XScuGic_Config *IntcConfig;
	Xil_ExceptionInit();

	IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);

	XScuGic_CfgInitialize(GicInstancePtr, IntcConfig,
					IntcConfig->CpuBaseAddress);

	Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
				(Xil_ExceptionHandler)XScuGic_InterruptHandler,
				GicInstancePtr);
	XScuGic_Connect(GicInstancePtr, GpioIntrId,
				(Xil_ExceptionHandler)IntrHandler,
				(void *)Gpio);


	XScuGic_Enable(GicInstancePtr, GpioIntrId);

	XGpioPs_SetIntrTypePin(Gpio, KEY1,  XGPIOPS_IRQ_TYPE_EDGE_FALLING);
	XGpioPs_SetIntrTypePin(Gpio, KEY2,  XGPIOPS_IRQ_TYPE_EDGE_FALLING);
	XGpioPs_SetIntrTypePin(Gpio, KEY3,  XGPIOPS_IRQ_TYPE_EDGE_FALLING);
	XGpioPs_SetIntrTypePin(Gpio, KEY4,  XGPIOPS_IRQ_TYPE_EDGE_FALLING);
	XGpioPs_SetIntrTypePin(Gpio, KEY5,  XGPIOPS_IRQ_TYPE_EDGE_FALLING);

	XGpioPs_IntrEnablePin(Gpio, KEY1);
	XGpioPs_IntrEnablePin(Gpio, KEY2);
	XGpioPs_IntrEnablePin(Gpio, KEY3);
	XGpioPs_IntrEnablePin(Gpio, KEY4);
	XGpioPs_IntrEnablePin(Gpio, KEY5);

	Xil_ExceptionEnableMask(XIL_EXCEPTION_IRQ);
}


void Gpio_Init(void){
	XGpioPs_Config *ConfigPtr;

	ConfigPtr = XGpioPs_LookupConfig(GPIO_DEVICE_ID);
	XGpioPs_CfgInitialize(&Gpio, ConfigPtr,ConfigPtr->BaseAddr);

	XGpioPs_SetDirectionPin(&Gpio, LED1, 1);
	XGpioPs_SetOutputEnablePin(&Gpio, LED1, 1);
	XGpioPs_WritePin(&Gpio, LED1, 0);

	XGpioPs_SetDirectionPin(&Gpio, LED2, 1);
	XGpioPs_SetOutputEnablePin(&Gpio, LED2, 1);
	XGpioPs_WritePin(&Gpio, LED2, 0);

	XGpioPs_SetDirectionPin(&Gpio, LED3, 1);
	XGpioPs_SetOutputEnablePin(&Gpio, LED3, 1);
	XGpioPs_WritePin(&Gpio, LED3, 0);

	XGpioPs_SetDirectionPin(&Gpio, KEY1, 0);
	XGpioPs_SetDirectionPin(&Gpio, KEY2, 0);
	XGpioPs_SetDirectionPin(&Gpio, KEY3, 0);
	XGpioPs_SetDirectionPin(&Gpio, KEY4, 0);
	XGpioPs_SetDirectionPin(&Gpio, KEY5, 0);

	SetupInterruptSystem(&Intc, &Gpio, GPIO_INTERRUPT_ID);

}


int main(void)
{
	u32 status;
	u16 cmos_h_pixel;                    //ov5640 DVP 输出水平像素点数
	u16 cmos_v_pixel;                    //ov5640 DVP 输出垂直像素点数
	u16 total_h_pixel;                   //ov5640 水平总像素大小
	u16 total_v_pixel;                   //ov5640 垂直总像素大小

	cmos_h_pixel = 1280;
	cmos_v_pixel = 720;
	total_h_pixel = 2570;
	total_v_pixel = 980;


	emio_init();
	status = ov5640_init( cmos_h_pixel,  //初始化ov5640
						  cmos_v_pixel,
						 total_h_pixel,
						 total_v_pixel);//设置OV5640输出分辨率为1280*720  PCLK = 72Mhz
	if(status == 0)
		xil_printf("OV5640 detected successful!\r\n");
	else
		xil_printf("OV5640 detected failed!\r\n");

	vd_mode = VMODE_1280x720;

	//配置VDMA
	run_vdma_frame_buffer(&vdma, VDMA_ID, vd_mode.width, vd_mode.height,
							frame_buffer_addr,0,0,BOTH);
    //初始化Display controller
	DisplayInitialize(&dispCtrl, DISP_VTC_ID, DYNCLK_BASEADDR);
    //设置VideoMode
	DisplaySetMode(&dispCtrl, &vd_mode);
	DisplayStart(&dispCtrl);
	Gpio_Init();
	while(1){
		XGpioPs_WritePin(&Gpio, LED3, !XGpioPs_ReadPin(&Gpio, LED3));
		sleep(1);
	}
    return 0;
}




本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/650563.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

束测后台实操文档1-PVE、PBS

合肥先进光源束测系统后台基础架构初步设计报告 合肥先进光源束测系统后台搭建进展2024.4.29 关于后台基础架构&#xff0c;写了上面两篇文档&#xff0c;只是框架的印象&#xff0c;没涉及到具体的实操&#xff0c;后面针对具体的搭建慢慢的完善操作的细节&#xff0c;从今年…

CC1链补充-LazyMap

前言 在我们上一篇中详细分析了CC1链&#xff0c;但是在CC1链中还有一条链就是LazyMap类 1.安装和CC1核心 环境安装的详情可以见上篇CC1分析的第二部分&#xff0c;环境搭建部分 两条不同的路线其实第一步核心都是相同的&#xff0c;执行类都是Tansformer接口和实现类&#…

使用稀疏约束水平集算法对MR图像中的脑肿瘤进行分割| 文献速递-深度学习肿瘤自动分割

Title 题目 Brain tumor segmentation in MR images using a sparse constrained level set algorithm 使用稀疏约束水平集算法对MR图像中的脑肿瘤进行分割" 01 文献速递介绍 脑磁共振&#xff08;MR&#xff09;成像是成像患者脑结构的主要方法&#xff0c;从MR图像…

【Linux】 虚拟机可以ping通主机 主机却ping不通虚拟机 解决方法

我当时初学linux&#xff0c;需要虚拟机联网&#xff0c;且虚拟机和windows需要能相互ping通&#xff0c;我当时就是虚拟机一切正常&#xff0c;虚拟机显示有网可以ping通百度&#xff0c;也可以ping通windows&#xff0c;但是windows就是ping不通虚拟机&#xff0c;这个问题困…

QT C++ 模型视图结构 QTableView 简单例子

在Qt中&#xff0c;MVC模式被广泛使用于各种用户界面框架中&#xff0c;包括Qt的模型视图结构。Qt的模型视图结构是基于MVC模式设计的&#xff0c;其中包括了Model、View和Delegate三个部分。 QTableView是Qt模型视图结构中的一种视图&#xff0c;它用于以表格形式显示数据。 …

【三数之和】python,排序+双指针

暴力搜索3次方的时间复杂度&#xff0c;大抵超时 遇到不会先排序 排序双指针 上题解 照做 class Solution:def threeSum(self, nums: List[int]) -> List[List[int]]:res[]nlen(nums)#排序降低复杂度nums.sort()k0#留两个位置给双指针i,jfor k in range(n-2):if nums[k]…

AJ-Report一次排错处理

山重水复疑无路&#xff0c;柳暗花明又一村...... 新项目需要选型开源的AJ-Report&#xff0c;计划再次基础上进行二开。 官网地址&#xff1a; AJ-Report: AJ-Report是一个完全开源&#xff0c;拖拽编辑的可视化设计工具。三步快速完成大屏&#xff1a;配置数据源---->写…

BEVFormer论文详细解读

文章目录 1. 前言1.1 3D VS 4D1.2 .特征融合过程中可能遇到的问题1.3 .BEV提出背景1.4 .BEV最终得到了什么1.5 .输入数据格式 2. 背景/Motivation2.1 为什么视觉感知要用BEV&#xff1f;2.2 生成BEV视角的方法有哪些&#xff1f;为何选用Transformer呢&#xff1f; 3. Method/S…

冯 • 诺依曼体系结构和操作系统

目录 冯诺依曼体系结构基于冯诺依曼体系数据的高效流转数据流转示例操作系统(Operator System)操作系统(Operator System)层次结构硬件部分系统软件部分用户部分 管理——先描述&#xff0c;再组织 就一个程序而言&#xff0c;需要在计算机中运行的才能实现它的价值&#xff0c…

JVM学习-垃圾回收器(一)

垃圾回收器 按线程数分类 串行垃圾回收器 串行回收是在同一时间段内只允许有一个CPU用于执行垃圾回收操作&#xff0c;此时工作线程被暂停&#xff0c;直至垃圾收集工作结束 在诸如单CPU处理器或者较小的应用内存等硬件平台不是特别优越的场合&#xff0c;串行回收器的性能表…

实战 | 使用YoloV8实例分割识别猪的姿态(含数据集)

导 读 本文主要介绍如何使用YoloV8实例分割识别猪的姿态&#xff08;含数据集&#xff09;。 背景介绍 在本文中&#xff0c;我将介绍如何使用YoloV8在猪的自定义数据集上进行实例分割&#xff0c;以识别和跟踪它们的不同姿态。 数据集 使用的数据集来源于Kokkenborg Aps&…

基于SVm和随机森林算法模型的中国黄金价格预测分析与研究

摘要 本研究基于回归模型&#xff0c;运用支持向量机&#xff08;SVM&#xff09;、决策树和随机森林算法&#xff0c;对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程&#xff0c;建立了相应的预测模型&#xff0c;并利用SVM、决策树和随机森林算法进行训…

基础7 探索JAVA图形编程桌面:数据库操作组件详解

在当今这个全面以数字化占据主导地位的时代&#xff0c;图形化编程犹如一颗冉冉升起的新星&#xff0c;逐渐在编程领域中崭露头角&#xff0c;并且正逐步成为一种全新的趋势。其具备的直观性以及易上手的显著特性&#xff0c;使得数量愈发庞大的开发者以及业务人员能够以更为快…

从零开始构建 Vision Transformer(ViT) 模型

Transformer 模型最早由 Vaswani 等人在 2017 年论文 Attention Is All You Need 中提出&#xff0c;并已广泛应用于自然语言处理。 2021年&#xff0c;Dosovitsky 等人在论文An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale中提出将 Transforme…

抖音小店怎么做才会赚钱?不要再想赔钱起店了,根本不稳定!

大家好&#xff0c;我是电商糖果 抖音小店发展有四五年的时间了&#xff0c;现在网上有很多分享做店方法的博主。 可以说百分之八十左右的博主喜欢分享货损起店&#xff0c;暴力起店的玩法。 难道这种赔钱起店的玩法真的赚钱吗&#xff1f; 很多新手商家开过之后就会发现&a…

【Redis】持久化操作详解

Redis 持久化操作详解 Redis 实现持久化的时候&#xff0c;具体是按照什么样的策略来实现的呢&#xff1f; Redis支持两种方式的持久化&#xff0c;一种是RDB方式、另一种是AOF&#xff08;append-only-file&#xff09;方式&#xff0c;两种持久化方式可以单独使用其中一种&…

RS8557XF功能和参数介绍及PDF资料

RS8557XF是一款单通道精密运算放大器&#xff0c;其主要特点包括高精度、低偏移电压、低输入偏置电流和低噪声。以下是该产品的部分参数和功能介绍&#xff1a; 增益带宽积 (GBW): 4.3 MHz&#xff0c;这使得该运放适用于较宽频率范围内的信号处理。 输入偏置电流: 650 μA&…

分布式事务解决方案(最终一致性【TCC解决方案】)

最终一致性分布式事务概述 强一致性分布式事务解决方案要求参与事务的各个节点的数据时刻保持一致&#xff0c;查询任意节点的数据都能得到最新的数据结果&#xff0c;这就导致在分布式场景&#xff0c;尤其是高并发场景下&#xff0c;系统的性能受到了影响。而最终一致性分布式…

Solana 验证节点搭建教程 SOL节点

搭建验证节点 (成功下载快照) 部署 Solana 验证节点 由于项目需求&#xff0c;需要部署一台solana节点&#xff0c;我们从一开始搭建&#xff0c;遇到许多坑&#xff0c;做个记录。 一定要注意服务器配置&#xff0c;配置不够&#xff0c;rpc启动不起来。 一、简介 官网地址…

OpenHarmony 实战开发——ArkUI中的线程和看门狗机制

一、前言 本文主要分析ArkUI中涉及的线程和看门狗机制。 二、ArkUI中的线程 应用Ability首次创建界面的流程大致如下&#xff1a; 说明&#xff1a; • AceContainer是一个容器类&#xff0c;由前端、任务执行器、资源管理器、渲染管线、视图等聚合而成&#xff0c;提供了生…