吴恩达2022机器学习专项课程C2W2:2.22 多类 softmax softmax与神经网络 softmax的代码改良 多标签分类

目录

  • 多分类问题
    • 1.什么是多分类问题
    • 2.多分类问题案例
    • 3.二分类与多分类的区别
  • Softmax
    • 1. 什么是Softmax
    • 2.逻辑回归预测的计算过程
    • 3. Softmax预测的计算过程
    • 4.Softmax 回归与逻辑回归的关系
    • 5. Softmax的损失函数
  • softmax与神经网络
    • 1.设置Softmax层
    • 2.Softmax层的计算
    • 3.softmax激活函数与其它激活函数的区别
    • 4.TensorFlow实现Softmax神经网络
  • softmax的代码改良
    • 1.简述
    • 2.数值舍入误差案例
    • 3.逻辑回归的数值舍入误差
    • 4.改良逻辑回归的数值舍入误差
    • 5.改良softmax的数值舍入误差
    • 5.具体的改良代码
  • 多标签分类问题
    • 1.什么是多标签分类?
    • 2.多类分类和多标签分类的区别
    • 3.建立多标签分类的神经网络
  • 总结

多分类问题

1.什么是多分类问题

多分类问题指的是在分类任务中,输出标签y不仅仅局限于两个类别,而是存在两个以上的可能类别。

2.多分类问题案例

  • 手写数字分类:仅区分手写数字0和1。
  • 邮政编码识别:涉及10个可能的数字类别。
  • 疾病诊断:判断病人可能患有三种或五种不同的疾病。
  • 视觉缺陷检测:判断药片是否存在刮痕、变色或破损等缺陷,对药片进行不同缺陷分类。

3.二分类与多分类的区别

  • 二分类问题:逻辑回归模型预测给定特征x条件下y为1的概率。
  • 多分类问题:需要预测y等于1、2、3、4等多个概率。多分类算法能够在空间中学习到一个决策边界,将空间划分为多个区域。在这里插入图片描述

Softmax

1. 什么是Softmax

它是一种函数,可以理解成逻辑回归模型的扩展,用于预测多分类问题,类似于sigmoid预测二分类。

2.逻辑回归预测的计算过程

首先计算z=wx+b,然后通过sigmoid函数得到a=g(z)。它意味着在给定输入特征x的情况下y=1的概率,如果y=1的概率为0.71,则y=0的概率为0.29(1-0.71)。
在这里插入图片描述

3. Softmax预测的计算过程

当y可以取四个可能的输出值(1234),softmax会如何操作?
(1)参数:这里的w1,w2,w3,w4和b1,b2,b3,b4是softmax回归的参数。

在这里插入图片描述

(2)计算公式(激活函数):分母都是一样的,从ez1加到ez4。分子是不断更换。我们可以理解成给定输入特征x的情况下,a1表示y=1的概率,a2表示y=2的概率,a3表示y=3的概率,a4表示y=4的概率。这4个概率的和也要等于1(0.30+0.20+0.15+0.35=1)。

在这里插入图片描述

(3)softmax的一般情况:上述的y只有4种情况即y=1,2,3,4,而一般情况下,y可以取n个值,即y=1,2,3,4…n。j的范围是1到n,aj理解为在给定输入特征x的情况下,y=j的概率。注意,a1到an的和要为1,因为概率总体和为1。

在这里插入图片描述

4.Softmax 回归与逻辑回归的关系

如果n为2,则softmax的计算结果和逻辑回归的计算结果相同,只是两者的参数不同。

5. Softmax的损失函数

(1)逻辑回归的损失函数:可以将1-a1简化成a2。因此当y=1时,损失函数为-loga1。如果y=0时,损失函数为-loga2。
在这里插入图片描述

(2)Softmax 回归的损失函数:根据真实标签y,选择对应的损失函数计算损失,例如y=2,计算-loga2,损失越接近1,表示模型预测分类的效果越好,因此算法会尽力让计算的值趋近于1。softmax的每个预测概率都在0-1之间在这里插入图片描述

softmax与神经网络

1.设置Softmax层

之前,我们使用了两类别的手写数字识别神经网络。现在,为了分类0到9的手写数字,我们需要将输出层调整为10个单元,并将其设为Softmax输出层。在这里插入图片描述

2.Softmax层的计算

输出层的每个神经元使用softmax的激活函数,神经元分别输出y=1~10的概率。在这里插入图片描述

3.softmax激活函数与其它激活函数的区别

对于Softmax激活函数,每个激活值(如a1)依赖于所有的Z值(Z1到Z10)。计算a1时,需要用到所有的Z值,而不是只用Z1。对于sigmoid、ReLU或线性激活函数,每个激活值是独立计算的。例如,a1只依赖于Z1,a2只依赖于Z2。
在这里插入图片描述

4.TensorFlow实现Softmax神经网络

(1) 定义网络结构:第一层有25个单元,激活函数为ReLU。第二层有15个单元,激活函数也为ReLU。第三层有10个输出单元,使用Softmax激活函数。

(2) 选择损失函数:使用SparseCategoricalCrossentropy函数作为损失函数,适用于多类别分类问题。它可以让每个输入样本只属于一个类别,不会一个图像即出现又2又是7的情况。

(3)训练模型:训练模型的步骤与之前类似。
在这里插入图片描述

softmax的代码改良

1.简述

上述TensorFlow实现Softmax神经网络的方法是正确的,但改用一种能减少舍入误差的方法,可以在 TensorFlow中更准确地进行计算。

2.数值舍入误差案例

先用数学演示两种计算方法,直接计算(option1)比通过复杂表达式(option2)计算有更少的舍入误差。
在这里插入图片描述
代码也证明了这点,在计算机中,(1 + 1/10000) - (1 - 1/10000) 计算的结果可能不是精确的2/10000,而是一个有误差的值。
在这里插入图片描述

3.逻辑回归的数值舍入误差

(1)直接使用a计算
损失函数中直接使用 a,在计算a时已经引入了舍入误差,这个过程类似计算1 + 1/10000 和 1 - 1/10000。

在这里插入图片描述

(2)使用展开a计算

  • 直接在损失函数中使用a的原始公式1 / (1 + e^(-z)),不显式计算 a。这种方法类似于直接计算 2/10000,因为TensorFlow可以在内部优化这些计算,减少舍入误差。在这里插入图片描述

4.改良逻辑回归的数值舍入误差

  • 首先要将输出层修改为线性激活,然后设置from_logits=True,意思是告诉我TensorFlow输出层未经过激活函数(线性激活),使其在内部使用逻辑回归处理 logits 值(即 z),这样TensorFlow可以重新排列项来减少数值舍入误差,提高计算精度。在这里插入图片描述

5.改良softmax的数值舍入误差

过程和逻辑回归的一样,只是内部使用softmax函数计算z。
在这里插入图片描述

5.具体的改良代码

(1)softmax
神经网络的最终输出不再是激活值a,而是线性激活z(wx+b),然后我们需要让输出z使用softmax计算,才能得到最终想要的结果。
在这里插入图片描述(2)逻辑回归
同理,输出的是线性激活z,因此需要z使用sigmoid计算,得到最终结果。
在这里插入图片描述

多标签分类问题

1.什么是多标签分类?

每个样本可能有多个标签,每个标签表示不同的类别。例如自动驾驶系统中,针对前方的图片,可能要判断是否有车、是否有公交车、是否有行人等。这种情况下,每张图像可以同时属于多个标签,单一标签无法描述图像中所有的信息。
在这里插入图片描述

2.多类分类和多标签分类的区别

  • 在多类分类中:目标 Y 是一个单个的数字,比如手写数字分类中的Y 可能是 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 中的一个。
  • 在多标签分类中:目标Y是一个由多个数字组成的向量,比如 [1, 0, 1],表示图像中有车,没有公交车,有行人。

3.建立多标签分类的神经网络

由于需要解决三个二分类问题(是否有车、是否有公交车、是否有行人),可以在输出层的这三个神经元使用 sigmoid 激活函数。因此,输出向量的3个元素将分别表示图像中是否有车、是否有公交车和是否有行人。
在这里插入图片描述

总结

本篇首先引入了多分类问题,然后介绍了解决多分类的算法:softmax,softmax可以理解为逻辑回归的扩展。通过对比逻辑回归,介绍了softmax的预测过程和损失函数,又将softmax引入神经网络,使我们看到了神经网络使用softmax作为输出层的预测。随后我们又引入了代码改良,通过设置输出层为线性激活,以及在编译模型时设置from_logits=True,来减小误差,增加预测的精度。最后介绍了多类分类与多标签分类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/649072.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Yolov5——训练目标检测模型详解(含完整源码)

项目的克隆 打开yolov5官网(GitHub - ultralytics/yolov5 at v5.0),下载yolov5的项目: 环境的安装(免额外安装CUDA和cudnn) 打开anaconda的终端,创建新的名为yolov5的环境(python选…

源码编译安装LAMP(安装apeche mysql php 论坛 网站 巨详细版)

目录 一.LAMP架构相关概述 1.各组件作用 Linux(平台) Apache(前台) MySQL(后台) PHP/Perl/Python(中间连接) 总结 二.编译安装Apache httpd服务 1.关闭防火墙,将…

DMPO -- Stressmarq

货号:SIH-324 名称:DMPO 规格:25mg、125mg 产品描述: 自由基和其他高活性氧的形成与许多疾病状态的发病机制有关。识别这些物种的能力至关重要,而自旋诱捕已经完成了这一目标。DMPO(5,5-二甲…

分析训练全球 2k+ 水文站数据,中科院团队发布 ED-DLSTM,实现无监测数据地区洪水预测

随着全球气候变化,洪水灾害正变得愈发频繁。联合国减少灾害风险办公室与比利时鲁汶大学灾害流行问题研究中心联合发布的报告指出:过去 20 年间,全球洪水灾害数量从 1,389 起上升到 3,254 起,增加了超两倍,占到灾害总数…

第一届 长城杯 总决赛wp

第一届 长城杯 总决赛 - Ahisec 第一阶段 Zip_guessinteger 第一层bkcrack攻击部分明文,注意偏移 ​ ┌──(root㉿Ten)-[~/tools/Misc/bkcrack] └─# ./bkcrack -C zip_guessinteger.zip -c breakthroughentry.txtflag.txt.zip -p 1.txt -o 30 bkcrack 1.6.1 …

一个给新手进阶的IAT加密壳

前言 这篇文章中介绍了IAT加壳与解壳的全过程,并用Ollydbg进行逆向分析,说明这个壳的鸡肋的之处,最后给出了核心源代码。 必备基础 必须很熟悉PE结构,特别是导入表的双桥结构。 IAT(Import Address Table),导入地址…

Shiro+Jwt+Redis

如何整合ShiroJwtRedis,以及为什么要这么做 我个人认为 ①为什么用shiro:“ShiroJwtRedis”模式和“单纯的shiro”模式相比,主要用的是shiro里面的登录认证和权限控制功能 ②为什么用jwt:“ShiroJwt”模式和“ShiroCookie”模式相…

怎么搭建微信留言板功能

在信息爆炸的时代,微信已经成为了我们日常生活中不可或缺的一部分。它不仅仅是一个简单的聊天工具,更是一个充满无限可能的营销平台。今天,我要向大家介绍的是如何在你的微信平台上搭建一个独具特色的留言板功能,让用户能够自由发…

【Flutter】Dialog组件PageView组件

🔥 本文由 程序喵正在路上 原创,CSDN首发! 💖 系列专栏:Flutter学习 🌠 首发时间:2024年5月27日 🦋 欢迎关注🖱点赞👍收藏🌟留言🐾 目…

需求跟踪矩阵是什么?怎么创建?一文详解

一、什么是需求跟踪矩阵 对项目经理或产品经理来说,需求清单肯定不陌生,那什么是需求跟踪矩阵呢? 需求跟踪矩阵(Requirement Track Matrix,简称RTM ),是把产品需求从其来源连接到能满足需求的…

Spring中@Component注解

Component注解 在Spring框架中,Component是一个通用的注解,用于标识一个类作为Spring容器管理的组件。当Spring扫描到被Component注解的类时,会自动创建一个该类的实例并将其纳入Spring容器中管理。 使用方式 1、基本用法: Co…

[AI OpenAI] OpenAI 安全更新

AI 首尔峰会中分享我们的实践 我们自豪地构建并发布了在能力和安全性方面都处于行业领先地位的模型。 超过一亿用户和数百万开发者依赖于我们安全团队的工作。我们将安全视为我们必须在多个时间范围内投资并取得成功的事项,从使今天的模型与我们未来预期的更具能力…

【Spring Cloud】远程调用

目录 Spring Cloud Netflix Feign简介前言Feign是什么OpenFeign组件和Spring Cloud OpenFeignOpenFeign组件Spring Cloud OpenFeign OpenFeign-微服务接口调用需求说明1. 启动Eureka Server服务2.创建两个项目,将其注册到Eureka Server3.在服务提供者中添加业务处理…

如何处理逻辑设计中的时钟域

1.什么是时钟域 2.PLL对时钟域管理 不管是否需要变频变相,在FPGA内部将外部输入时钟从专用时钟引脚扇入后先做PLL处理。如何调用pll,见另一篇文章。 约束输入时钟 creat_clock -period 10 -waveform {0 5} [get_ports {sys_clk}] 3.单bit信号跨时钟…

【Linux进程篇】父子进程fork函数||进程生死轮回状态||僵尸进程与孤儿进程

W...Y的主页 😊 代码仓库分享💕 前言:上篇文章中我们认识了进程,可执行程序在内存中加载运行被称作进程,而操作系统是通过给每一个可执行程序创建一个PCB来管理进程的。并且学习了一些查看进程的指令,认识…

Flask 蓝图路由的模块化开发

基于 Flask 蓝图路由的模块化开发 1. 编程目标 为了提高Flask应用的可维护性和可扩展性,我们通过使用Flask的蓝图(Blueprint)功能,可以将不同的功能模块拆分到独立的文件中,方便后续的开发和维护。 2. 项目结构 项目结构树如下&#xff1…

助力企业标准化搭建--图框模板的创建

古有秦皇书同文、车同轨,今各行各业都有国际标准、国家标准,其目的就是为了标准化、统一化,由此可见标准化的重要性;一个企业若是想规范员工的操作,推行标准化也很重要;因此对于需要绘制电气图纸的行业来说…

从0开始学统计-秩和检验

1.什么是秩和检验? 秩和检验,也称为Wilcoxon 秩和检验,是一种非参数统计检验方法,用于比较两个独立样本的中位数是否有显著差异。它不要求数据满足正态分布假设,因此适用于小样本或者数据不满足正态分布假设的情况。 …

2024年怎么下载学浪app视频

想要在2024年紧跟潮流,成为一名优秀的学浪用户吗?今天就让我们一起探索如何下载学浪app视频吧! 学浪视频下载工具打包 学浪下载工具打包链接:百度网盘 请输入提取码 提取码:1234 --来自百度网盘超级会员V10的分享…

性能怪兽!香橙派 Kunpeng Pro 开发板深度测评,带你解锁无限可能

性能怪兽!香橙派 Kunpeng Pro 开发板深度测评,带你解锁无限可能 文章目录 性能怪兽!香橙派 Kunpeng Pro 开发板深度测评,带你解锁无限可能一、背景二、香橙派 Kunpeng Pro 硬件规格概述三、使用准备与系统安装1️⃣、系统安装步骤…