一个月速刷leetcodeHOT100 day11 链表完全解析 以及链表5道easy题

链表

表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包活两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。
更用链表结构可以克服数组链表需要预先知道数据大小的缺点,链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理。但是链表失去了数组随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大。
链表的特点
1.插入、删除数据效率高(1)级别(只需更改指针指向即可),随机访问效率低O(n)级别(需要从链头至链尾遍历)。
2.和数组相比,内存空间消耗更大,因为每个存储数据的节点都需要额外的空间存储后继指针a

单链表封装

class Node {

constructor(val) {

this.val = val;

this.next = null;

}

}

  

class LinkList {

constructor() {

this.head = null;

this.length = 0;

}

append(val) {

let node = new Node(val);

if (this.head) {

let p = this.head;

while (p.next) {

p = p.next;

}

p.next = node;

// val.next = this.hand;

} else {

this.head = node;

}

this.length++;

}

removeAt(index){

if(index > 0 && index < this.length){

let pre;

let current = this.head

if(index === 0){

this.head = this.head.next

}

for(let i=0 ;i < index;i++){

pre = current

current = current.next

}

pre.next = current.next

this.length--

return current.val

}

  

}

getNodeAt(index){

if(index >= 0 && index <this.length){

let node = this.head

for (let i= 0; i< index; i++) {

node = node.next

}

return node.val

}

return

}

remove(element){

let current;

for (let i= 0; i< this.length; i++) {

if(element === this.getNodeAt(index)){

return i

}

current = current.next

}

return -1

}

insert(element,index){

if(index >=0 && index< this.length){

let node = new Node(element)

if(index === 0){

let cur = this.head

this.head = node

node.next = cur

}else{

for(let i = 0 ;i < this.length; i++){

let pre = getNodeAt(index -1)

let cur = pre.next

node.next = cur

pre.next = node

}

}

this.length--

return true

  

}

return false

}

isEmpty(){

return this.length === 0

}

size(){

return this.length

}

getHead(){

return this.head

}

print() {

let p = this.head;

let str = "";

if (p) {

do {

str += p.val + " -> ";

p = p.next;

} while (p.next);

{

str += p.val;

console.log(str);

}

} else {

console.log("空链表");

}

}

}

双向链表

节点除了存储数据外,还有两个指针分别指向前一个节点地址(前驱指针prev)和下一个节点地址(后继指next)。

  class Node {

constructor(val){

this.val = val

this.next = null

this.prev = null

}

}

class NodeList{

constructor() {

this.head = null;

this.tail =null;

this.length = 0;

}

push(val){

let node = new Node(val)

if(this.head === null){

this.head = node

this.tail = node

}else{

this.tail.next = node

node.prev = this.tail

this.tail = node

}

this.length++

}

insert(val,index){

if(index >= 0 && index <= this.length){

let node = new Node(val)

let current= this.head

if(index === 0){

if(this.head === null){

this.head = node

this.tail = node

}else{

node.next = this.head

this.head.prev = node

this.head = node

}

  

}else if(index === this.length){

current = this.tail

current.next = node

node.prev = current

this.tail = node

}else{

const previous = this.getNodeAt(index -1)

current = previous.next

node.next = current

current.prev = node

previous.next= node

node.prev= prev

}

this.length++

return true

}

}

removeAt(index){

if(index >= 0 && index <= this.length){

let current = this.head

if(index === 0){

this.head = current.next

if(this.length === 1){

this.tail = null

}else{

this.head.prev = null

}

}else if(index ===this.length - 1){

current = this.tail

this.tail =current.prev

this.tail.next = null

}else{

let previous = this.getNodeAt(index -1)

current = previous.next

previous.next = current.next

current.next.prev = previous

}

this.length--;

return current.element

}

}

  

}

循环链表封装

环链表和链表之间准一的区别在于,最后一个元素指向下 元素的指针(tail.next)不是引用undefined,而是指向第一个元素(head)

 class Node {

constructor(val){

this.val = val

this.next = null

}

}

  

class circleLinklist {

constructor(){

this.head = null

this.length = 0;

}

push(val){

let node= new Node(val)

if(this.length === 0){

this.head = node

}else{

let current = getNodeAt(this.size()-1)

current.next = node

}

node.next = this.head

this.length++

}

insert(val,index){

if(index>=0&& index<=this.count){

const node = new Node(val)

let current = this.head

if(index === 0){

if(this.head === null){

this.hand = node

node.next = this.head

}else{

node.next = current

//获取最后一个元素

current = this.getNodeAt(this.size() - 1)

this.head = node

current.next = this.head

}

}else{

const previous = this.getNodeAt(index -1)

node.next = previous.next

previous.next = node

}

this.length++

return true

}

return false

}

removeAt(index){

if(index >= 0 && index< this.length){

let current = this.head

if(index === 0){

if(this.size() === 1){

this.head = undefined

}else{

let last = this.getNodeat(this.size() -1)

this.head = this.head.next

last.next = this.head

}

  

}else{

const previous = this.getNodeAt(index -1)

current = previous.next

previous.next = current.next

}

this.count--

return current.val

}

}

size(){

return this.length

}

  

}

相交链表

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。

图示两个链表在节点 c1 开始相交**:**

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

自定义评测:

评测系统 的输入如下(你设计的程序 不适用 此输入):

  • intersectVal - 相交的起始节点的值。如果不存在相交节点,这一值为 0
  • listA - 第一个链表
  • listB - 第二个链表
  • skipA - 在 listA 中(从头节点开始)跳到交叉节点的节点数
  • skipB - 在 listB 中(从头节点开始)跳到交叉节点的节点数

评测系统将根据这些输入创建链式数据结构,并将两个头节点 headA 和 headB 传递给你的程序。如果程序能够正确返回相交节点,那么你的解决方案将被 视作正确答案 。

示例 1:

**输入:**intersectVal = 8, listA = [4,1,8,4,5], listB = [5,6,1,8,4,5], skipA = 2, skipB = 3
**输出:**Intersected at ‘8’
**解释:**相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,6,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
— 请注意相交节点的值不为 1,因为在链表 A 和链表 B 之中值为 1 的节点 (A 中第二个节点和 B 中第三个节点) 是不同的节点。换句话说,它们在内存中指向两个不同的位置,而链表 A 和链表 B 中值为 8 的节点 (A 中第三个节点,B 中第四个节点) 在内存中指向相同的位置。

示例 2:

**输入:**intersectVal = 2, listA = [1,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
**输出:**Intersected at ‘2’
**解释:**相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [1,9,1,2,4],链表 B 为 [3,2,4]。
在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

示例 3:

**输入:**intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
**输出:**null
**解释:**从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。
由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。
这两个链表不相交,因此返回 null 。
思路:遍历两个链表,遇到相同值则返回

var getIntersectionNode = function(headA, headB) {

const visited = new Set();

let temp = headA;

while (temp !== null) {

visited.add(temp);

temp = temp.next;

}

temp = headB;

while (temp !== null) {

if (visited.has(temp)) {

return temp;

}

temp = temp.next;

}

return null;

};

反转链表

给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

示例 1:

**输入:**head = [1,2,3,4,5]
输出:[5,4,3,2,1]

示例 2:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

**输入:**head = [1,2]
输出:[2,1]

示例 3:

**输入:**head = []
输出:[]
思路:将当前节点的 next\textit{next}next 指针改为指向前一个节点。由于节点没有引用其前一个节点,因此必须事先存储其前一个节点。在更改引用之前,还需要存储后一个节点。最后返回新的头引用。
思路:改变链表的next指针的指向,直接将链表反转

var reverseList = function(head) {
    if(!head || !head.next) return head;
    let temp = null, pre = null, cur = head;
    while(cur) {
        temp = cur.next;
        cur.next = pre;
        pre = cur;
        cur = temp;
    }

    return pre;
};

回文链表

给你一个单链表的头节点 head ,请你判断该链表是否为

回文链表

。如果是,返回 true ;否则,返回 false 。

示例 1:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

**输入:**head = [1,2,2,1]
**输出:**true

示例 2:

**输入:**head = [1,2]
**输出:**false
思路:遍历然后对比

var isPalindrome = function(head) {

let arr = []

while (head) {

arr.push(head.val)

head = head.next

}

for (let i = 0, j = arr.length -1 ;i < j; i++, j--) {

if (arr[i] !== arr[j]) {

return false

}

}
return true

};

环形链表

给你一个链表的头节点 head ,判断链表中是否有环。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。

如果链表中存在环 ,则返回 true 。 否则,返回 false 。

示例 1:

**输入:**head = [3,2,0,-4], pos = 1
**输出:**true
**解释:**链表中有一个环,其尾部连接到第二个节点。

示例 2:

**输入:**head = [1,2], pos = 0
**输出:**true
**解释:**链表中有一个环,其尾部连接到第一个节点。

示例 3:

**输入:**head = [1], pos = -1
**输出:**false
**解释:**链表中没有环。
思路:用set存储 碰见相同值则返回

var hasCycle = function(head) {

const set = new Set();

while(head) {

if(set.has(head)) return true;

set.add(head);

head = head.next;

}

return false;

};

合并两个有序链表

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 
示例 1:

**输入:**l1 = [1,2,4], l2 = [1,3,4]
输出:[1,1,2,3,4,4]

示例 2:

**输入:**l1 = [], l2 = []
输出:[]

示例 3:

**输入:**l1 = [], l2 = [0]
输出:[0]
思路:代码比较l1和l2头节点的值。如果l1的值小于l2的值,那么将l1的next指针指向递归调用mergeTwoLists函数的结果,其中l1.next作为新的l1传入,而l2保持不变。然后返回l1。
如果l1的值大于等于l2的值,那么将l2的next指针指向递归调用mergeTwoLists函数的结果,其中l2.next作为新的l2传入,而l1保持不变。然后返回l2。

var mergeTwoLists = function(l1, l2) {

if(l1 === null){

return l2;

}

if(l2 === null){

return l1;

}

if(l1.val < l2.val){

l1.next = mergeTwoLists(l1.next, l2);

return l1;

}else{
l2.next = mergeTwoLists(l1, l2.next);
return l2;
}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/647048.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SQL Server2019安装步骤教程(图文)_最新教程

一、下载SQL Server2019 1.到微软官网下载SQL Server Developer版本&#xff0c;官网当前的2019版本下载需要注册账号。 不想注册的朋友&#xff0c;可以选择从网盘下载&#xff1a;点击此处直接下载 2.下载之后先解压&#xff0c;解压后执行exe安装程序。打开之后的界面如下…

元组推导式

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 使用元组推导式可以快速生成一个元组&#xff0c;它的表现形式和列表推导式类似&#xff0c;只是将列表推导式中的“[]”修改为“()”。例如&#xf…

基础6 探索JAVA图形编程桌面:集合组件详解

我们的团队历经了数不胜数的日夜&#xff0c;全力以赴地进行研发与精心调试&#xff0c;最终成功地推出了一款具有革命性意义的“图形化编程桌面”产品。这款产品的诞生&#xff0c;不仅极为彻底地打破了传统代码开发那长久以来的固有模式&#xff0c;更是把焦点聚集于解决长期…

第12章-ADC采集电压和显示 基于STM32的ADC—电压采集(详细讲解+HAL库)

我们的智能小车用到了ADC测量电池电压的功能&#xff0c;这章节我们做一下。 我们的一篇在这里 第一篇 什么是ADC 百度百科介绍&#xff1a; 我们知道万用表 电压表可以测量电池&#xff0c;或者电路电压。那么我们是否可以通过单片机获得电压&#xff0c;方便我 们监控电池状…

Midjourney Describe API 使用文档

Midjourney Describe API 使用文档 Midjourney Describe API 的主要功能是通过上传图片&#xff0c;获取对图片的描述。使用该 API&#xff0c;只需要传递图片文件&#xff0c;API 会返回图片的详细描述。无需繁琐的参数设置&#xff0c;即可获得高质量的图片描述。 支持多种图…

第86天:代码审计-PHP项目TP框架安全写法1day利用0day分析

案例一&#xff1a; 利用框架漏洞-TP3框架-SQL注入&Demo&YxtCMF 首先先查询thinkphp的版本 去寻找版本漏洞: Thinkphp3.2.3及以下版本漏洞整理_thinkphp3.2.3漏洞-CSDN博客 去查这个exp注入 这里的利用条件是必须有find方法&#xff0c;并且where后面的参数是数组 …

网络模型-BFD与网络协议联动

一、BFD:双向转发检测 双向转发检测BFD(Bidirectional Forwarding Detection)是一种全网统一的检测机制&#xff0c;用于快速检测、监控网络中链路或者IP路由的转发连通状况。 1、BFD优点: 对相邻转发引擎之间的通道提供轻负荷、快速故障检测。这些故障包括接口数据链路&#…

【全开源】赛事报名系统源码(Fastadmin+ThinkPHP和Uniapp)

基于FastadminThinkPHP和Uniapp开发的赛事报名系统&#xff0c;包含个人报名和团队报名、成绩查询、成绩证书等。 构建高效便捷的赛事参与平台 一、引言&#xff1a;赛事报名系统的重要性 在举办各类赛事时&#xff0c;一个高效便捷的报名系统对于组织者和参与者来说都至关重…

【数学代码】求两点之间的距离

Hello&#xff01;大家好&#xff0c;今天讲讲求两点之间的距离。 已知点A的坐标为&#xff08;x1,y1&#xff09;,点B的坐标为&#xff08;x2,y2&#xff09;&#xff0c;求两点之间的直线距离。 首先&#xff0c;我先讲明&#xff0c;要解决这个问题&#xff0c;需要用到勾…

八种单例模式

文章目录 1.单例模式基本介绍1.介绍2.单例模式八种方式 2.饿汉式&#xff08;静态常量&#xff0c;推荐&#xff09;1.基本步骤1.构造器私有化&#xff08;防止new&#xff09;2.类的内部创建对象3.向外暴露一个静态的公共方法 2.代码实现3.优缺点分析 3.饿汉式&#xff08;静态…

深入浅出MySQL事务实现底层原理

重要概念 事务的ACID 原子性&#xff08;Atomicity&#xff09;&#xff1a;即不可分割性&#xff0c;事务中的操作要么全不做&#xff0c;要么全做一致性&#xff08;Consistency&#xff09;&#xff1a;一个事务在执行前后&#xff0c;数据库都必须处于正确的状态&#xf…

XSS+CSRF攻击

一、前言 在DVWA靶场的XSS攻击下结合CSRF攻击完成修改密码 也就是在具有XSS漏洞的情况下实施CSRF攻击 二、实验 环境配置与上一篇博客一致&#xff0c;有兴趣可以参考CSRF跨站请求伪造实战-CSDN博客 首先登录DVWA&#xff0c;打开XSS模块 name随便输入&#xff0c;message…

Linux服务的简介与分类

服务的简介与分类 服务的分类 查询已安装的服务和区分服务 #列出所有rpm包默认安装服务的自启动状态 [rootlocalhost ~]# chkconfig --list atd atd 0:关闭 1:关闭 2:关闭 3:启用 4:启用 5:启用 6:关闭 [rootlocalhost ~]# chkconfig --list sshd sshd …

MDK安装

MDK安装 1 MDK的差异2 切换MDK3 安装芯片支持包注意点 1 MDK的差异 不同版本MDK有略微的差别&#xff0c;比如&#xff1a;MDK536.EXE&#xff0c;支持版本5的交叉编译链。如下图所示&#xff1a; 而MDK539.EXE不支持版本5的交叉编译链&#xff0c;所以工作的时候&#xff0c…

[JDK工具-6] jmap java内存映射工具

文章目录 1. 介绍2. 主要选项3. 生成java堆转储快照 jmap -dump4. 显示堆详细信息 jmap -heap pid5. 显示堆中对象统计信息 jmap -histo pid jmap(Memory Map for Java) 1. 介绍 位置&#xff1a;jdk\bin 作用&#xff1a; jdk安装后会自带一些小工具&#xff0c;jmap命令(Mem…

vue3模板语法以及attribute

模板语法​ Vue 使用一种基于 HTML 的模板语法&#xff0c;使我们能够声明式地将其组件实例的数据绑定到呈现的 DOM 上。所有的 Vue 模板都是语法层面合法的 HTML&#xff0c;可以被符合规范的浏览器和 HTML 解析器解析。 在底层机制中&#xff0c;Vue 会将模板编译成高度优化…

Python Beautiful Soup 使用详解

大家好&#xff0c;在网络爬虫和数据抓取的领域中&#xff0c;Beautiful Soup 是一个备受推崇的 Python 库&#xff0c;它提供了强大而灵活的工具&#xff0c;帮助开发者轻松地解析 HTML 和 XML 文档&#xff0c;并从中提取所需的数据。本文将深入探讨 Beautiful Soup 的使用方…

解决:LVGL+GUI Guider 1.7.2运行一段时间就会卡死死机,内存泄露溢出的问题

概括&#xff1a; 我在使用NXP官方GUI Guider生成的代码出现了内存泄漏的问题。但我遇到的并不是像其他人所说的style的问题&#xff0c;如下链接。而是因为在页面渲染之前就使用了该页面内的组件&#xff0c;内存就会不断增加。 LVGL 死机 内存泄漏_lvgl 内存溢出-CSDN博客 运…

springboot整合kkFileView部署,前端使用

前言&#xff1a; 官方文档&#xff1a;https://kkfileview.keking.cn/zh-cn/docs/production.html docker方式或加入星球获取发行包直接获取启动&#xff0c;无需以下步骤&#xff1a; 拉取镜像# 网络环境方便访问docker中央仓库 docker pull keking/kkfileview:4.1.0# 网…

明星IP切片带货爆单营,0基础搞定IP切片带货短视频(69节课)

把握带货趋势&#xff0c;了解切片流程&#xff0c;剪辑带货创收营 课程目录&#xff1a; 01第一章实操链路-第一节IP选择.mp4 02第一章实操链路-第二节账号准备.mp4 03第一章实操链路-第四节开通权限.mp4 04第一章实操链路-第五节货品准备.mp4 05第一章实操链路-第六节素…