基于机器学习的一线城市租房价格预测分析与实现,实现三种算法预测

本文旨在基于机器学习方法,对一线城市租房价格进行预测分析,并使用Matplotlib可视化、随机森林、一元线性回归和多元线性模型进行模型对比。通过爬取北京链家二手房数据作为研究对象,探讨了租房价格与各种因素之间的关系阐述了研究目的,即预测一线城市租房价格,以满足人们对于租房市场的需求。其次,介绍了理论与实际意义,指出准确预测租房价格对于租房者、房东和政府都具有重要意义,可以提供决策支持和参考依据。

本文主要研究内容包括数据采集、数据处理、特征选择和建立预测模型四个方面。使用request爬虫技术,从北京链家网站上获取了二手房数据,并进行了数据清洗和整理,以保证数据质量。通过特征选择方法,确定了与租房价格相关的特征变量。最后,采用了随机森林、一元线性回归和多元线性模型等机器学习算法,建立了预测模型,并对不同模型进行了比较和评估。

通过实验结果的分析,得出以下结论:随机森林模型在预测一线城市租房价格方面表现最好,具有较高的准确性和预测能力;多元线性模型次之;而一元线性回归模型的预测效果较差。同时,还对模型的优化和应用进行了讨论,并提出了进一步研究的方向和意见为租房市场的决策制定提供了参考依据,具有一定的理论与实际意义。

一、课题来源、背景及其意义

1.1课题来源

本研究课题的来源是对当前一线城市租房市场需求的迫切性以及人们对租房价格走势的关注。随着城市化进程的加速和人口流动的增加,一线城市的房地产市场一直备受关注。租房作为一线城市居民的重要选择,其价格预测对于租房者、房东和政府都具有重要意义。

对于租房者来说,准确预测租房价格可以提供参考依据,帮助他们做出合理的租房决策。对于房东来说,可以提供租金定价的依据,提高租房效益。对于政府来说,可以为房地产政策制定和市场监管提供科学依据,促进租房市场的健康发展。

然而,目前存在着特征选择不够准确、模型预测精度有限等问题。因此,本研究旨在通过机器学习方法对一线城市租房价格进行预测分析,并使用matplotlib可视化技术呈现结果。同时,将与随机森林、一元线性回归和多元线性模型等传统模型进行对比,以提升租房价格预测的准确性和可靠性。

通过研究一线城市租房价格的预测,可以为租房市场参与者提供决策支持和参考依据,有助于优化租房资源配置,提高市场透明度。此外,本研究还将填补现有研究的空白,为相关领域的学术研究和实践提供新的思路和方法。

1.2研究目的及意义

1.2.1理论意义

基于机器学习的预测模型:通过应用机器学习算法,如随机森林、一元线性回归和多元线性模型等,对一线城市租房价格进行预测分析,可以在理论上推进租房价格预测方法的研究。这些模型能够从大量数据中自动学习并发现潜在的模式和关联性,提高预测准确性和可靠性。

matplotlib可视化技术:使用matplotlib可视化库,可以将预测结果以图表的形式直观地展示出来,增强了模型结果的可解释性。可视化技术可以帮助我们更好地理解数据之间的关系和趋势,为决策制定提供科学依据。

1.2.2实际意义

租房者决策支持:准确预测一线城市租房价格,能够为租房者提供决策支持和参考依据。他们可以根据预测结果来选择适合自己需求和经济能力的租房方式,节省时间和精力。

房东租金定价:对于房东来说,准确预测租房价格有助于他们合理定价,提高租房效益。通过比较不同模型的预测结果,房东可以制定更加科学合理的租金策略,降低空置率。

政府政策制定:准确预测一线城市租房价格对于政府制定房地产政策和市场监管具有重要意义。政府可以根据预测结果来制定合适的房地产政策,促进租房市场的健康发展,并为市场监管提供科学依据。

学术研究与实践应用:本研究填补了现有研究的空白,为相关领域的学术研究提供了新的思路和方法。同时,该研究还具有重要的实践应用意义,为房地产从业者和市场参与者提供了决策参考价值,促进了租房市场的健康发展。

三、主要研究内容

主要研究内容可以包括以下几个方面:使用Python爬虫技术从某房屋租售网站中爬取一线城市(北京)的租房数据。原始数据包含租金、面积、户型、朝向、区域、租房类型、地铁等变量。对数据进行清洗、去重和转换,处理缺失值和异常值,确保数据质量。同时进行租房价格影响因素的分析。通过探索性数据分析(EDA)和统计分析,探讨不同变量与租房价格之间的关系,如面积、户型、朝向、区域等。还可以分析其他因素,如租房类型、地铁站等是否对租房价格有显著影响。另外在数据集上进行特征选择,识别出对租房价格具有重要影响的特征变量。使用相关性分析、特征重要性评估等方法来选择最具预测能力的特征。然后,构建机器学习模型,如线性回归、决策树、随机森林等,来建立影响租房价格的模型。

对构建的影响租房价格的模型进行评估和解释。使用评估指标(如均方误差、决定系数)来评估模型的预测能力和稳定性。同时,对模型中的变量系数进行解释,了解各个因素对租房价格的贡献程度和方向。

3.1数据清洗与预处理

数据清洗与预处理的主要研究内容包括数据导入与列名设置、缺失值处理、重复值删除、变量转换和可视化分析等步骤。通过这些操作,可以为后续的影响因素分析和建模提供高质量的数据基础。

3.2租房价格影响因素的分析

租房价格影响因素的分析是研究中的核心内容,通过探索性数据分析和统计分析来确定可能影响租房价格的主要因素。以下是主要研究内容:

3.2.1变量关系探索

利用可视化工具绘制了房租价格直方图、房面积分布图和房面积与价格关系的散点图。这些图表有助于观察房租价格和其他变量之间的分布情况和趋势,并初步判断它们之间的关系。

3.2.2相关系数矩阵分析

计算了特征变量之间的相关系数矩阵,并使用热图进行可视化展示。通过观察相关系数,可以确定变量之间的线性相关性。这有助于识别出与房租价格强相关的特征变量,进一步深入分析其影响程度。

3.2.3楼层对房租价格的影响分析

通过绘制楼层分析的计数图,观察不同楼层的房屋数量分布。此外,还可以通过统计分析等方法,进一步研究楼层对房租价格的影响,例如分析不同楼层的平均价格和价格波动情况。

3.2.4特征箱线图分析

绘制了特征变量的箱线图,用于观察数据的分布情况和离群值。通过箱线图,可以发现异常值和不同特征变量之间的差异性,进而判断它们对房租价格的影响程度。

3.3特征选择与建模

特征选择与建模是研究中的关键步骤,旨在识别对租房价格具有显著影响的特征变量,并构建合适的机器学习模型进行预测。以下是主要的研究内容:

特征选择方法:通过计算特征之间的相关系数矩阵,使用热图可视化展示各个特征变量之间的相关性。利用相关系数矩阵和颜色编码,可以初步筛选出与租房价格强相关的特征变量。

单变量线性回归分析:使用一元线性回归模型,分析面积与价格之间的关系。通过拟合回归模型,计算回归系数和截距,进一步了解面积对租房价格的影响程度。同时,评估模型性能,如计算均方误差(MSE)和决定系数(R^2),以评估模型的预测能力。

多元线性回归分析:使用多元线性回归模型,考虑多个特征变量对价格的综合影响。通过构建回归模型,计算各个特征变量的回归系数和截距,进一步了解各个特征变量对租房价格的贡献程度。同样,评估模型性能,如计算均方误差(MSE)和决定系数(R^2)。

随机森林回归分析:使用随机森林回归模型进行特征选择和建模。通过网格搜索方法,寻找最优的超参数组合,并构建随机森林回归模型。通过计算均方误差(MSE)和决定系数(R^2),评估模型的预测性能。

3.4模型评估与解释

模型评估与解释是研究中的重要环节,旨在对构建的影响租房价格的模型进行评估和解释。以下是主要的研究内容:

线性回归模型评估与解释:通过计算一元线性回归模型和多元线性回归模型的均方误差(MSE)和决定系数(R^2),来评估模型的预测能力和稳定性。较低的均方误差和较高的决定系数表示模型拟合良好。此外,还可以解释回归模型的系数和截距,了解各个特征变量对租房价格的贡献程度和方向。

随机森林回归模型评估与解释:通过网格搜索方法,寻找最优的超参数组合,并构建随机森林回归模型。使用测试集数据,计算预测结果与真实值之间的均方误差(MSE)和决定系数(R^2),评估模型的预测性能。此外,还可以解释随机森林回归模型中各个特征变量的重要性,了解它们对租房价格的贡献程度。

模型解释与可视化:对构建的模型进行解释,包括线性回归模型和随机森林回归模型。可以通过查看模型的系数、截距以及特征重要性等指标,了解各个特征变量对租房价格的影响程度和方向。此外,还可以使用可视化工具绘制模型预测结果与真实值之间的散点图或折线图,以便更直观地理解模型的拟合情况。

数据可视化分析

绘制直方图:使用matplotlib.pyplot的hist()函数绘制价格的直方图。

图4

由图四可知,北京租房价格分布大多数集中在0-20000元,超过60000元的租房数量几乎为0.

面积特征分析

面积特征分析,是基于租房面积,对租房进行统计分析。将租房面积划分不同的区间,同时,结合租房价格,验证租房面积越大,价格是否越昂贵。

绘制房面积分布情况和价格关系:使用seaborn库的distplot()函数绘制房面积的分布情况和regplot()函数绘制房面积与价格的关系图。

图5

图6

如图55所示的分析结果。图5的纵坐标代表房数量占比,横坐标代表房面积区间。从图中可以发现,在所有的房中,面积在50到150平米的房数量远远高于其他面积的房数量,而面积在300平米以上的房的数量几乎为0。通过distplot和kdeplot绘制柱状图观察面积特征的分布情况,属于长尾型分布,这说明了有一些房的面积很大,且超出正常范围的房。通过regplot绘制了面积和房屋总价之间的散点图,发现面积与总价基本呈现线性关系,符合基本常识:面积越大,价格越高。但是图中也有例外的点:有的二手房面积超过了500平米,价格不到20000元;有的房面积在100平米左右,但价格却在100000元左右。

楼层分析

楼层分析是基于房的所在楼层,对不同楼层的房进行统计作图,更能直观的看到不同楼层房的数量。

绘制楼层分析图:使用seaborn库的countplot()函数绘制楼层数量统计图。

图7

如图7所示的分析结果。在中国的传统意识中,认为房层数后的数字代表了深远的意义。从图中可以看到,6层、18层和28层二手房数量最多。但是单独的楼层特征没有什么意义,因为每个小区住房的总楼层数都不一样,我们需要知道楼层的相对意义。另外,楼层与文化也有很重要联系,比如中国文化七上八下,七层相对于8层的确是更受欢迎。当然,正常情况下中间楼层是比较受欢迎的,价格也高,底层和顶层受欢迎度较低,价格也相对较低。所以楼层是一个非常复杂的特征,对房价影响也比较大。

相关分析通过热力图,分析房价和哪些因素的关系比较密切,然后再试图利用数据挖掘方法,找出这些因素和房价之间的关系,从而实现利用这些关键因素对房源价格的预测。

绘制特征相关系数矩阵热图:使用seaborn库的heatmap()函数绘制特征相关系数矩阵的热图。

图8

8中左图中的数字构成了一个对称矩阵。以第二行第一列的-0.04为例,这代表朝向面积的影响因子为0.04。其中,列表中的数字值越大,代表横纵坐标所代表的两个因素互相影响力越大。矩阵中对角线的数字都为1.00,观察横纵坐标,我们发现其横纵坐标代表的影响是一样的。可以看到,在房价的影响因素里,房屋面积和卧室数是主要的影响因素。

箱型图分析异常值

绘制特征箱线图:使用seaborn库的boxplot()函数绘制特征的箱线图。

图9

由图9可知,价格列数据异常值很多,其他列的异常值几乎没有,所以要对价格列进行异常处理。

5. 异常值处理

删除异常值:根据设定的下限和上限阈值lower_threshold和upper_threshold,使用布尔索引对price列中的异常值进行删除。

6. 线性回归模型

单变量线性回归:

提取特征和标签:选择'area'作为特征,'price'作为标签。

创建线性回归模型:使用sklearn.linear_model库的LinearRegression()创建线性回归模型。

训练模型:使用fit()函数对数据进行训练。

预测结果:使用predict()函数对特征进行预测。

输出模型参数和评估指标:输出回归系数、截距和均方误差(MSE)、决定系数(R^2)。

7. 多变量线性回归模型

提取特征和标签:选择除'price'之外的其他特征作为输入,'price'作为标签。

创建多变量线性回归模型:使用sklearn.linear_model库的LinearRegression()创建多变量线性回归模型。

训练模型:使用fit()函数对数据进行训练。

预测结果:使用predict()函数对特征进行预测。

输出评估指标:输出均方误差(MSE)和决定系数(R^2)。

8. 随机森林回归模型

提取特征和标签:选择特征和标签。

划分训练集和测试集:使用train_test_split()函数划分数据集。

创建随机森林回归模型:使用sklearn.ensemble库的RandomForestRegressor()创建随机森林回归模型。

定义超参数空间:设定n_estimators、max_depth和min_samples_split的取值范围。

网格搜索寻找最优模型:使用GridSearchCV()函数进行网格搜索。

输出最优模型的评估指标:输出均方误差(MSE)和决定系数(R^2)。

根据结果,可以得出以下结论:

线性回归模型:

一元线性回归模型的预测结果显示,房屋面积对租房价格有显著影响,每增加1平方米的面积,租金约增加58.51元。

一元线性回归模型的均方误差(MSE)为11,122,146.36,决定系数(R^2)为0.33,说明该模型对租房价格的解释能力较低。

多元线性回归模型:

多元线性回归模型的预测结果显示,除了房屋面积外,其他特征变量(朝向、楼层、卧室数、客厅数、卫生间数、区域)也对租房价格有影响。

多元线性回归模型的均方误差(MSE)为6,971,547.48,决定系数(R^2)为0.58,相较于一元线性回归模型,多元模型的预测性能有所提升。

随机森林回归模型:

经过网格搜索寻找最优模型后,随机森林回归模型的最优配置是:决策树数量为100,最大深度为None,节点划分所需的最小样本数为2。

最优模型的均方误差(MSE)为4,280,871.64,决定系数(R^2)为0.74,说明随机森林回归模型对租房价格的解释能力较高。

通过模型比较和评估,可以发现随机森林回归模型在预测租房价格方面具有较好的性能,相较于一元线性回归和多元线性回归模型,其具有更低的均方误差和更高的决定系数,因此可视为最佳模型选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/646462.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据库基础-mysql详解之索引的魅力(N叉树)】

索引的魅力目录 🌈索引的概念🌈使用场景🌈索引的使用🌞🌞🌞查看MySQL中的默认索引🌞🌞🌞创建索引🌞🌞🌞删除索引 站在索引背后的那个男…

Java时间类--JDK7

一、Date类 1.引言 全世界的时间,有一个统计的计算标准。 1884年,将英国格林威治时间认为是世界标准时间。 在2012年1月份后,由于误差太大,最高可达16min。 取消使用了近130年的格林威治时间,改用原子钟作为世界标…

Mistral AI 团队发布 Mistral-7B-Instruct-v0.3

抱抱脸上线了 Mistral-7B-v0.3 的基础版和指令微调版。 相比于Mistral-7B-v0.2,新版本更新如下: – 词汇量从 32000 扩展到 32768 – 支持 v3 分词器 – 支持函数调用 Mistral-7B-v0.3:网页链接 Mistral-7B-Instruct-v0.3:网页…

vue项目打包教程

如果是用 vue-cli 创建的项目,则项目目录中没有 config 文件夹,所以我们需要自建一个配置文件;在vue项目目录下创建文件 vue.config.js,需注意文件名称必须是 vue.config.js,然后在文件中插入以下代码: 文件…

Wireshark 搜不到字符串?

一个原因是pcap里没有这个字符串, 另一个原因可能是ctrlF之后,选择搜索的地方不对,或者是编码方式选择的不对。 上面图片的第一个下拉框是要搜索的一个范围,是在哪一个panel搜索,范围说明在下面这个链接有详细说明&…

数据结构:树(3)【二叉树链式结构实现】【二叉树的前序,中序,后序遍历】【求二叉树全部结点个数】【求二叉树叶子结点个数】【求二叉树的深度】【单值二叉树】

一.二叉树链式结构的实现 二叉树的链式结构的实现相对于顺序结构的实现就没有那么多的讲究了。就是普通的链表,只不过多了一个指向的指针。 具体结构如下: typedef int BTDataType; typedef struct BinaryTreeNode {BTDataType data;struct BinaryTre…

ASP+ACCESS客户管理信息系统

摘要 本文介绍了客户管理系统的实现方法。目的在于让大家共享学习和运用这一语言的体会和收获。本系统是Internet/Intranet环境下面向电子商务的客户管理,通过企业管理技术、电子商务和信息技术的高度集成,讨论了客户管理系统的系统构架、系统的工作…

深入理解python列表与字典:数据结构的选择与性能差异

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、列表与字典:基础数据结构的对比 二、列表:逐个遍历的查找方式 …

面试题·栈和队列的相互实现·详解

A. 用队列实现栈 用队列实现栈 实现代码如下 看着是队列,其实实际实现更接近数组模拟 typedef struct {int* queue1; // 第一个队列int* queue2; // 第二个队列int size; // 栈的大小int front1, rear1, front2, rear2; // 两个队列的首尾指针 } MyS…

生成式AI导论2024-李宏毅

生成式AI导论2024-李宏毅 第0讲: 课程说明第1讲:生成式AI是什么第2講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」 第0讲: 课程说明 生成式AI的入门课程 第1讲:生成式AI是什么 生成式人…

【机器学习】基于核的机器学习算法(Kernel-based Algorithms):原理,应用与优化

👀传送门👀 文章引言🔍🍀核函数的概念🚀基于核的算法原理💖基于核的算法应用🐟支持向量机(SVM)📕核主成分分析(KPCA) 🍀未…

Leetcode42题:接雨水

1.题目描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,…

ES的安装以及配置+ik分词

环境:windows10、ES(8.13.3)、Kibana(8.13.3)、Logstash(8.13.3)、ik(8.13.3) 1.下载安装ES Download Elasticsearch | ElasticDownload Elasticsearch or the complet…

基于物联网架构的电子小票服务系统

1.电子小票物联网架构 采用感知层、网络层和应用层的3层物联网体系架构模型,电子小票物联网的架构见图1。 图1 电子小票物联网架构 感知层的小票智能硬件能够取代传统的小票打印机,在不改变商家原有收银系统的前提下,采集收音机待打印的购物…

图像处理ASIC设计方法 笔记24 等价表和标记代换

(一)等价表的整理与压缩 1.1 等价关系的识别与追踪 在初步标记过程完成后,等价表的整理和压缩变得至关重要。这一阶段的首要任务是从等价表的地址1开始,对等价表进行逐个扫描。在扫描过程中,系统将检查每个临时标记是否存在等价关系。若发现等价关系,系统将执行追踪过程,…

用c++用4个凸函数(觉得啥好用用啥)去测试adam,rmsprop,adagrad算法的性能(谁先找到最优点)

为了测试 Adam、RMSProp 和 Adagrad 算法的性能,你可以使用四个凸函数进行实验。以下是一些常用的凸函数示例: Rosenbrock 函数: Booth 函数: Himmelblau 函数: Beale 函数: 你可以选择其中一个或多…

企业活动想找媒体报道宣传怎样联系媒体?

在那遥远的公关江湖里,有一个传说,说的是一位勇士,手持鼠标和键盘,踏上了寻找媒体圣杯的征途。这位勇士,就是我们亲爱的市场部门小李,他的任务是为公司即将举行的一场盛大的企业活动找到媒体的聚光灯。 小李的故事,开始于一张空白的Excel表格,上面列着各大媒体的名称,旁边是一片…

4. C++网络编程-TCP客户端的实现

TCP Client网络编程基本步骤 创建socket&#xff0c;指定使用TCP协议使用connect连接服务器使用recv/send接收/发送数据关闭socket TCP-connect连接请求 !man 2 connect #include <sys/types.h> /* See NOTES */ #include <sys/socket.h> int connect(int sock…

Aws EC2 + Aws Cli + Terraform

1 什么是 Terraform&#xff1f; Terraform 是由 HashiCorp 创建的“基础架构即代码”(Infrastructure-as-Code&#xff0c;IaC)开源工具。Terraform 的配置语言是 HashiCorp Configuration Language&#xff08;HCL&#xff09;&#xff0c;用来替代更加冗长的 JSON 和 XML 等…