大工作量LUAD代谢重编程模型多组学(J Transl Med)

目录

1,单细胞早期、晚期和转移性 LUAD 的细胞动力学变化

2,细胞代谢重编程介导的LUAD驱动恶性转移的异质性

3,模型构建 S-MMR评分管线构建

4,S-MMR 模型的预后评估

5, 还开发了S-MMR 评分网络工具

6,S-MMR 评分重塑了 LUAD 中的免疫浸润模式

7,S-MMR评分预测免疫治疗疗效的能力

8,靶点和药物筛选

9,解剖 S-MMR 评分为 3 的恶性细胞

10,泛癌分析

最近的研究越来越多地揭示了代谢重编程与肿瘤进展之间的联系。然而,代谢重编程对肺腺癌 (LUAD) 患者间异质性和预后的具体影响仍需进一步探索。在这里,我们根据恶性和代谢基因集引入了一个细胞层次结构框架,称为恶性和代谢重编程(MMR),以重新分析178,739个单细胞参考图谱。

亮点:大工作量,支持向量机、随机森林以及决策树模型等多机器学习框架(比单独机器学习模型和算法具有更好的稳健性和精确性)。该研究根据 LUAD scRNA-seq 图谱定义了一组与 LUAD 肿瘤发生和细胞代谢重编程相关的基因,命名为“MMR”。采用Cox回归、随机生存森林(RSF)、CoxBoost、支持向量机(SVM)和梯度提升机(GBM)等机器学习方法,明确了MMR与LUAD预后的关系。我们引入了一种创新的集成学习管道,即三阶段 MMR (3 S-MMR),并通过遗传算法进行增强。该框架分别在特征工程和模型开发中使用双训练集,从而降低了严重过拟合的风险。研究涉及了单细胞、空间代谢组学多组学研究


1,单细胞早期、晚期和转移性 LUAD 的细胞动力学变化

在解开LUAD细胞层次结构的初始阶段,我们重新分析了178,739个scRNA-seq细胞,覆盖48个样本,包括Nln、nLung、tLung、PE、mLN和tL/B组织,以及根据经典标记基因对T、B、NK、上皮、巨噬细胞、单核细胞、成纤维细胞、MDC、肥大、血浆、内皮和PDC进行明显分类的细胞。

早期、晚期和转移性 LUAD 的细胞动力学变化。A)样品的细胞分布无显著的批次效应。(B) 来自所有 scRNA-seq 样品的细胞的 t-SNE 图谱,通过细胞类型注释着色。(C) 显示每种细胞类型的代表性标记基因的点图。(D) 每种细胞类型中来自每种来源组织的比例,如图所示。(E) 折线图显示通过 Ro/e 评分估计的每种细胞类型的组织流行率。(F) 分级热图显示来自每个来源组织的上皮细胞的 CNV。正常肺源性上皮细胞用作对照参考。红色:增益;蓝色:损失。(G) 推断 CNV 的 K 均值聚类以获得癌细胞。(H) 显示5个K-means聚类CNV分数差异的小提琴图。(簇1被指定为正常上皮细胞,而其余细胞被归类为恶性细胞。)

2,细胞代谢重编程介导的LUAD驱动恶性转移的异质性

由细胞代谢重编程介导的 LUAD 驱动的恶性转移之间的异质性。A) 正常细胞和恶性细胞之间 GSVA 对每个细胞评分的标志性基因集通路活性的差异。(B)来自每个来源组织的恶性细胞的代谢途径活动。统计上不显著的值(随机排列余P > 0.05)显示为空白。(C) 基于恶性细胞和正常细胞之间差异表达基因的 Wilcoxon 秩和检验结果的百分比差异(Delta 表示细胞百分比)和对数倍数变化。(D) 显示 1290 个 MMR 基因交叉分析的 UpSet 图。(E) 1290 MMR基因的DO富集分析。(女、女)小提琴图 (F) 和气泡图 (G) 显示使用 AUCell、UCell、singscore、ssGSEA、AddModulescore 和 Scoreing(其他算法的分数之和)评分的每种细胞类型的 MMR 基因集的富集分数。(H) 使用 AUCell、UCell、singscore、ssGSEA、AddModulescore 和 Scoring 评分显示各来源组织的 MMR 基因集富集分数动态变化的小提琴图

3,模型构建 S-MMR评分管线构建

A) 3 S-MMR 评分的工作流程。(B) 25个LASSO驱动基因对的基因对信息和危害比。(C) 47名基础学习者的C指数和标准

4,S-MMR 模型的预后评估

5, 还开发了S-MMR 评分网络工具

6,S-MMR 评分重塑了 LUAD 中的免疫浸润模式

3 S-MMR 评分重塑了 LUAD 中的免疫浸润模式。A) 高 3 S-MMR 评分组和低 3 S-MMR 评分组之间癌症免疫周期各个步骤的差异。(B) 3 S-MMR 评分 (riskScore) 与基质、免疫和 ESTIMATE 评分之间的相关性。(C) 3 S-MMR 评分与癌症免疫周期步骤之间的相关性(左)。3 个 S-MMR 评分与已发表的免疫细胞特征的富集评分之间的相关性(右)。(D) 3 S-MMR 评分与 6 种 TIIC(CD8 + T 细胞、CD4 + T 细胞、NK 细胞、巨噬细胞、Th1 细胞和树突状细胞)浸润水平之间的相关性,采用 6 种独立算法计算。(E) 表示高 3 和低 3 S-MMR 评分组之间病理 HE 染色变化的图像(TCGA 数据库)。(F)从左到右:mRNA表达(中位归一化表达水平);表达与甲基化(基因表达与 DNA 甲基化 β 值相关);扩增频率(在特定亚型中扩增 IM 的样本分数与所有样品中的扩增分数之间的差异);以及高 3 和低 3 S-MMR 评分组对 75 个 IM 基因的缺失频率(作为扩增)。缩写:*P < 0.05;**P < 0.01;P < 0.001。

7,S-MMR评分预测免疫治疗疗效的能力

S-MMR 评分预测免疫治疗效果的能力。A-F)TIDE (A)、功能障碍 (B)、排除 (C)、CD8 (D) MDSC (E) 和 Merck18 (F) 评分的小提琴图。(G) 子图算法预测高低 3 个 S-MMR 评分组对 CTLA4 和 PD-1 抑制剂的反应。(H) 高低 3 S-MMR 评分组患者之间免疫检查点曲线的相对表达水平的箱线图。(I-N)GSE126044 (I-J)、GSE35640 (K-L) 和 GSE78220 (M-N) 队列中免疫治疗反应者和非反应者之间 3 个 S-MMR 评分的差异。(O-P)T-SNE 降低映射了 SD 和 PR 患者 (O) 的细胞分布,以及 GSE207422 数据集中 3 个 S-MMR 评分 (P) 的分布。(Q) GSE207422数据集中 SD 和 PR 患者之间 3 个 S-MMR 评分的小提琴图。(R) 通过 R 估计高低 3 个 S-MMR 组的组织偏好O/E在GSE207422数据集中。(S-T)T-SNE 降低映射了 SD 和 PR 患者 (S) 细胞的分布,以及 GSE145281 数据集中 3 个 S-MMR 评分 (T) 的分布。(U) GSE145281数据集中 SD 和 PR 患者之间 3 个 S-MMR 评分的小提琴图。(V) 高低 3 个 S-MMR 组的组织偏好通过 R 估计O/E在GSE145281数据集中。缩写:*P < 0.05;**P < 0.01;P < 0.001

8,靶点和药物筛选

首先,我们进行了 Spearman 相关性分析,以探索 TCGA-LUAD 队列中 3 个 S-MMR 评分与潜在药物靶点表达水平之间的关联。由此,我们确定了一组与评分呈正相关的共享基因,将这些基因指定为 3 S-MMR 评分的相关靶标。随后,通过使用肺癌细胞系对 CERES 评分和 3 S-MMR 评分进行 Spearman 相关性分析,我们继续确定 54 个依赖于不良预后的靶点。

9,解剖 S-MMR 评分为 3 的恶性细胞

解剖 S-MMR 评分高 3 的恶性细胞。A)Monocle2推断的恶性细胞的发展轨迹。3 S-MMR 评分高的恶性细胞主要位于分化根部,3 S-MMR 评分低的恶性细胞主要位于中点和终点状态。(B)恶性细胞中3个S-MMR评分相关基因沿假时间的热图。(C) 热图显示了高 3 S-MMR 评分恶性细胞和低 3 S-MMR 评分恶性细胞之间不同 TFs 激活的热图。(D、E)TFs 在恶性细胞高 (D) 和低 3 S-MMR (E) 评分之间的最高活性。RSS 表示调节子特异性评分。(女、女)所有细胞类型的细胞聊天分析。显示了相互作用的数量和相互作用强度。(H,I)显示 SPP1 信号通路推断的细胞间通信网络的分层图。(J) HE染色显示stRNA样品的组织学不同区域。黄色:癌症区域。(K) 3 S-MMR评分强度的空间图。(L)利用RCTD算法识别空间图中不同细胞类型的分布。

10,泛癌分析

A) 33 种癌症类型中 3 个 S-MMR 评分的 Cox 回归分析。红色表示 P < 0.05 显著性结果。(B) 个别癌症类型的平均 3 S-MMR 评分。组织类型、癌症类型和平均 3 S-MMR 评分从内圈到外圈显示。(C-N)在 12 种癌症中,3 个 S-MMR 评分的 Kaplan-Meier 生存曲线显著(对数秩检验)

参考文献:Architecting the metabolic reprogramming survival risk framework in LUAD through single-cell landscape analysis: three-stage ensemble learning with genetic algorithm optimization

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/645120.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

笔记89:LeetCode_135_分发糖果

前言&#xff1a; 注&#xff1a;代码随想录中没有很清楚的提起想出方法的思路&#xff0c;只是给出了解决这个问题的大致思路和代码&#xff1b;下面我将介绍一下我的思考过程&#xff0c;并贴出实现代码&#xff1b; a a a a 思考过程&#xff1a; 思路1&#xff1a;为了…

Hadoop3:HDFS中DataNode与NameNode的工作流程

一、DataNode中的数据情况 数据位置 /opt/module/hadoop-3.1.3/data/dfs/data/current/BP-823420375-192.168.31.102-1714395693863/current/finalized/subdir0/subdir0块信息 每个块信息&#xff0c;由两个文件保存&#xff0c;xxx.meta保存的是数据长度、校验和、时间戳&am…

【halcon】set_part 实现平移和缩放 彻悟版

背景 之前写了一篇关于set_part 的文章 &#xff0c;确实也实现了平移和缩放。平移是对的&#xff0c;但是缩放其实有畸变。这个问题一直都困扰着我&#xff0c;知道昨天连续测试了好几个小时&#xff0c;直到晚上11点终于完美解决。 坐标和高宽 坐标 再讲set_part 之前&am…

C语言实现三子棋游戏

目录 一.三子棋游戏分析和设计 二.文件结构设计 三.代码实现 1.先打印菜单&#xff0c;定义menu函数。 2.棋盘初始化 3.下棋 玩家下棋&#xff1a; 电脑下棋&#xff1a; 4判断输赢 判断平局&#xff1a; 四、完整代码 test.c game.h game.c 《三子棋》是一款古老…

【找出满足差值条件的下标 I】python

目录 暴力题解 优化&#xff1a;滑动窗口维护大小值 暴力题解 class Solution:def findIndices(self, nums: List[int], indexDifference: int, valueDifference: int) -> List[int]:nlen(nums)for i in range(n):for j in range(n-1,-1,-1):if abs(i-j)>indexDiffere…

python使用base加密解密

原理 base编码是一种加密解密措施&#xff0c;目前常用的有base16、base32和base64。其大致原理比较简单。 以base64为例&#xff0c;base64加密后共有64中字符。其加密过程是编码后将每3个字节作为一组&#xff0c;这样每组就有3*824位。将每6位作为一个单位进行编码&#xf…

Windows平台C#版RTSP转RTMP直播推送定制版

技术背景 前几年我们发布了C版的多路RTMP/RTSP转RTMP转发官方定制版。在秉承低延迟、灵活稳定、低资源占用的前提下&#xff0c;客户无需关注开发细节&#xff0c;只需图形化配置转发等各类参数&#xff0c;实现产品快速上线目的。 如监控类摄像机、NVR等&#xff0c;通过厂商…

经典链表题-链表回文结构

&#x1f389;&#x1f389;&#x1f389;欢迎莅临我的博客空间&#xff0c;我是池央&#xff0c;一个对C和数据结构怀有无限热忱的探索者。&#x1f64c; &#x1f338;&#x1f338;&#x1f338;这里是我分享C/C编程、数据结构应用的乐园✨ &#x1f388;&#x1f388;&…

C#基础语言

​​​​ 目录 一个c# 程序主要包括以下部分&#xff1a;​​​​​​​ 标识符 C# 关键字 C# 数据类型 值类型&#xff08;Value types&#xff09; 引用类型&#xff08;Reference types&#xff09; 对象&#xff08;Object&#xff09;类型 动态&#xff08;Dynam…

迅睿 CMS 中开启【ionCube 扩展】的方法

有时候我们想要某种功能时会到迅睿 CMS 插件市场中找现有的插件&#xff0c;但会有些担心插件是否适合自己的需求。于是迅睿 CMS 考虑到这一层推出了【申请试用】&#xff0c;可以让用户申请试用 30 天&#xff0c;不过试用是有条件的&#xff0c;条件如下&#xff1a; php 版…

03. Spring 事务管理

文章目录 1. Spring 事务管理简介2. Transactional 注解属性信息3. Transactional 简单使用4. Transactional 使用注意事项4.1 正确指定事务回滚的异常类型4.1.1 Java 异常继承体系 4.2 Transactional 注解应用在 public 方法或类上才有效4.3 正确设置 Transactional 的 propag…

解决vue3项目vite打包忽略.vue扩展名

项目打包时报could not relolve “...”&#xff0c;因为vite已不再默认忽略.vue扩展名。 解决方法如下&#xff1a; 在vite.config.js中配置vite使其忽略 .vue 扩展名&#xff08;不建议忽略&#xff09; 注意&#xff1a;即使忽略了.vue文件&#xff0c;在实际写的时候也要加…

【CTF Web】CTFShow web7 Writeup(SQL注入+PHP+进制转换)

web7 1 阿呆得到最高指示&#xff0c;如果还出问题&#xff0c;就卷铺盖滚蛋&#xff0c;阿呆心在流血。 解法 注意到&#xff1a; <!-- flag in id 1000 -->拦截很多种字符&#xff0c;连 select 也不给用了。 if(preg_match("/\|\"|or|\||\-|\\\|\/|\\*|\…

Spring MVC+mybatis 项目入门:旅游网(一)项目创建与准备

个人博客&#xff1a;Spring MVCmybatis 项目入门:旅游网&#xff08;一&#xff09;项目创建与准备 | iwtss blog 先看这个&#xff01; 这是18年的文章&#xff0c;回收站里恢复的&#xff0c;现阶段看基本是没有参考意义的&#xff0c;技术老旧脱离时代&#xff08;2024年辣…

使用不同的编译器编译 Skia,性能差距居然这么大

Skia 是一个开源的 2D 图形库&#xff0c;提供路径、文本、图像和渲染等图形处理功能。它最初由 Skia Inc. 开发&#xff0c;后来被 Google 收购&#xff0c;并用在多个 Google 的产品中&#xff0c;包括 Chrome 浏览器和 Android 操作系统中。从事 Android 系统开发的同学应该…

Science 基于尖峰时序编码的模拟神经触觉系统,可实现动态对象分类

快速处理和有效利用手与物体交互过程中产生的动态触觉信号&#xff08;例如触摸和抓握&#xff09;对于触觉探索和灵巧的物体操作至关重要。将电子皮肤&#xff08;e-skins&#xff09;推进到模仿自然触觉的水平&#xff0c;是恢复截肢者和瘫痪患者丧失的功能的可行解决方案&am…

北核论文完美复现:自适应t分布与动态边界策略改进的算术优化算法

声明&#xff1a;文章是从本人公众号中复制而来&#xff0c;因此&#xff0c;想最新最快了解各类智能优化算法及其改进的朋友&#xff0c;可关注我的公众号&#xff1a;强盛机器学习&#xff0c;不定期会有很多免费代码分享~ 目录 原始算术优化算法 改进点1&#xff1a;引入…

深入探索MySQL SELECT查询:从基础到高级,解锁数据宝藏的密钥

系列文章目录 更新ing... MySQL操作全攻略&#xff1a;库、表、数据、事务全面指南深入探索MySQL SELECT查询&#xff1a;从基础到高级&#xff0c;解锁数据宝藏的密钥MySQL SELECT查询实战&#xff1a;练习题精选&#xff0c;提升你的数据库查询技能PyMySQL&#xff1a;连接P…

【电路笔记】-巴特沃斯滤波器设计

巴特沃斯滤波器设计 文章目录 巴特沃斯滤波器设计1、概述2、Decades和Octaves3、低通巴特沃斯滤波器设计4、滤波器设计 – 巴特沃斯低通5、三阶巴特沃斯低通滤波器在之前的滤波器教程中,我们研究了简单的一阶型低通和高通滤波器,这些滤波器的 RC 滤波器电路设计中仅包含一个电…

Ant design vue的表格双击编辑功能(即双击开始编辑并自动获得焦点,失去焦点时完成编辑)

本文基于Ant Design Vue官方网站的表格&#xff08;可编辑单元格&#xff09;&#xff08;表格 Table - Ant Design Vue (antdv.com))中的样板代码获得双击编辑且获得焦点、失去焦点时完成编辑的功能。 要点&#xff1a; &#xff08;1&#xff09;双击时候实现编辑&#xff…