深度神经网络——什么是生成式人工智能?

1.引言

生成式人工智能最近引起了很大的关注。 该术语用于指依赖无监督或半监督学习算法来创建新的数字图像、视频、音频和文本的任何类型的人工智能系统。 麻省理工学院表示,生成式人工智能是过去十年人工智能领域最有前途的进展之一。

通过生成式人工智能,计算机可以学习与输入相关的基本模式,从而使它们能够输出类似的内容。 这些系统依赖于生成对抗网络(GAN)、变分自动编码器和变压器。

围绕生成式人工智能的炒作正在稳步增长,Gartner 将其纳入“新兴技术和趋势影响 2022 年雷达“ 报告。 据该公司称,它是市场上最具影响力和发展最快的技术之一。

Gartner 报告的一些关键预测包括:

  • 到 2025 年,50% 的药物发现和开发计划将使用生成式 AI。
  • 到 2025 年,生成式 AI 将生成所有数据的 10%。
  • 到 2027 年,30% 的制造商将使用生成式人工智能来提高产品开发效率。

在这里插入图片描述

2.生成式人工智能技术

生成式人工智能可以利用现有的文本、音频文件或图像来创建新内容。 它使计算机能够检测与输入相关的底层模式,以便生成类似的内容。

生成式人工智能通过各种技术实现这一过程:

  • 生成对抗网络(GAN): GAN 由两个神经网络组成。 有一个生成器和一个鉴别器网络,它们相互竞争以在两者之间建立平衡。 生成器网络生成类似于源数据的新数据或内容。 鉴别器网络区分源数据和生成的数据,以识别更接近原始数据的数据。
  • 变形金刚: Transformer 模型包括 GPT-3 等大牌模型,它们模仿认知注意力,可以衡量输入数据部分的重要性。 变形金刚经过训练可以理解语言或图像。 他们还可以学习分类任务并从大型数据集中生成文本或图像。
  • 变分自动编码器: 使用变分自动编码器,编码器将输入编码为压缩代码,而解码器从代码中再现初始信息。 当正确训练时,压缩表示可以将输入数据分布存储为较小维度的表示。

3.生成式人工智能应用

生成式人工智能有着广泛的应用,涵盖营销、教育、医疗保健和娱乐等许多领域。

以下是生成式人工智能的一些顶级应用:

  • 卫生保健: 生成对抗网络正在彻底改变医疗保健行业。 可以教会他们制作代表性不足的数据的虚假示例,然后将其用于训练和开发模型。 GAN 还用于数据识别,提高数据隐私和安全性。 它们解决了可能损害宝贵患者数据的逆转过程的主要问题。
  • 音乐: 生成式人工智能还通过创建可以模仿人脑的神经网络而应用于音乐中。 例如,谷歌的 Magenta 软件创作了第一首人工智能歌曲。 生成式人工智能在音乐领域的最大好处之一是它能够创造新的流派。
  • 动态图片: 生成式人工智能在电影行业的应用不断增长。 无论光线或天气条件如何,专业人士都可以随时捕捉画面,因为照片可以在之后进行转换。 生成式人工智能还可以利用人脸合成和声音克隆,使演员的图像和视频能够适应不同年龄的人。
  • 媒体: 生成式人工智能广泛应用于整个媒体行业。例如,它可以通过超分辨率来升级内容。机器学习技术可以将低质量的内容变成高质量的内容。
  • 机器人技术: 生成建模有助于强化机器学习模型表现出更少的偏见,并且能够理解模拟和现实世界中的抽象概念。

4.生成式人工智能的挑战

尽管生成式人工智能具有诸多优点和应用,但它也带来了一些挑战。 其一,不良行为者可能会利用它来进行恶意活动,例如诈骗他人或创建垃圾新闻。

生成式人工智能算法需要大量训练数据才能成功执行任务。 同时,GAN 无法输出全新的图像或文本,它们必须获取数据并将其组合在一起以创建新的输出。

生成式人工智能的另一个挑战是意想不到的结果,像 GAN 这样的一些模型很难控制。 在这种情况下,模型可能会不稳定并产生意外的结果。
在这里插入图片描述

5.生成型人工智能公司的例子

有许多公司参与了生成式人工智能的各种应用:

  • Synthesia: Synthesia 是最著名的生成式人工智能公司之一,它是视频合成技术的早期先驱。 这家总部位于英国的公司成立于 2017 年,采用新的合成媒体技术来创建视觉内容,并降低利用该技术所需的成本、技能和语言障碍。
  • 主要是人工智能: 大多数人工智能开发了合成数据引擎,能够大规模模拟真实且具有代表性的合成数据。它可以自动从现有数据中学习模式、结构和变化。
  • 合成人工智能: 综合人工智能结合了新颖的生成人工智能模型和不断发展的 CGI 技术。据该公司称,他们的专有管道能够生成大量数据,用于训练复杂的计算机视觉模型。
  • 合成: Synthetaic 是一家领先的合成数据公司,为 AI 提供高质量的数据。 该公司的 RAIC(快速自动图像分类)可自动分析大型非结构化数据集,因此您可以比传统方法更快地训练和部署 AI 模型。
  • 缺水症: Aqemia 是一家计算机药物发现公司,依靠独特的量子启发算法与人工智能相结合来预测亲和力。 该技术有助于快速发现更多创新分子,并有更大的成功机会。
  • 艾米: AiMi 是音乐行业顶尖的生成人工智能公司之一,它提供实时复活的动态、无尽的电子音乐流。 您可以使用 AiMi 创建音乐场景,让您沉浸在连续的声音和视觉效果中。
    在这里插入图片描述

这些只是利用生成式人工智能模型来引入创新和不断发展的技术的众多公司中的一小部分。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/644868.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【gradle】MAC下用gradle构建部署springboot项目

MAC下用gradle构建部署springboot项目 前言下载安装配置gradle下载安装下载可能出现的问题 (zsh: command not found: brew) 配置环境变量配置国内下载源全局配置单个项目配置 通过idea构建项目构建后的项目结构 小结延伸 前言 好久以前就听说gradle了&…

MongoDB(介绍,安装,操作,Springboot整合MonggoDB)

目录 MongoDB 1 MongoDB介绍 MongoDB简介 MongoDB的特点 MongoDB使用场景 小结 2 MongoDB安装 安装MongoDB 连接MongoDB MongoDB逻辑结构 MongoDB数据类型 小结 3 MongoDB操作 操作库和集合 操作文档-增删改 操作文档-查询 MongoDB索引 小结 4 SpringBoot整合…

【竞技宝】英超:滕哈格命真硬!足总杯夺冠获欧联资格

足总杯决赛结束,曼联爆冷2比1击败联赛冠军曼城夺冠,滕哈格再一次用顶级理解带队拿到杯赛冠军。赛前曼彻斯特当地有媒体爆料,曼联管理层已经决定要在足总杯决赛之后解雇滕哈格,这个消息让不少球迷都很担心滕哈格的状态。但是荷兰主帅凭借强大的内心,带领球队击败了不可一世的曼城…

深度神经网络——什么是决策树?

决策树 决策树是一种强大的机器学习算法,它通过模拟人类决策过程来解决分类和回归问题。这种算法的核心在于它如何将数据集细分,直至每个子集足够“纯净”,即包含的实例都属于同一类别或具有相似的数值范围。 开始于根节点:决策…

项目管理-人力资源管理

目录 一、概述 二、人力资源计划编制 2.1 概述 2.2 层次结构图 2.3 分配任务矩阵 三、组建项目团队 3.1 概述 3.2 内部谈判 3.3 事先分派 3.4 外部招聘 3.5 虚拟团队 3.6 总结 四、项目团队建设 4.1 概述 4.2 团队发展过程 4.2.1 概述 4.2.2 形成期 4.2.3 震…

华为造车布局全曝光,对标奔驰、迈巴赫等

文 | Auto芯球 作者 | 雷慢 这一刻,我承认我格局小了, 就在刚刚,余承东曝光了华为智选车的布局计划, 华为问界、智界、享界等,将全面对标奔驰、迈巴赫、劳斯莱斯等车系, 这布局,确实是世界…

英语学习笔记26——Where is it?

Where is it? 它在那里? 课文部分

【云原生】K8s 管理工具 kubectl 详解(三)

金丝雀发布/灰度发布(Canary Release) 一、金丝雀发布简介 Deployment控制器支持自定义控制更新过程中的滚动节奏,如“暂停(pause)”或“继续(resume)”更新操作。比如等待第一批新的Pod资源创…

AtCoder Beginner Contest 355 A~F

A.Who Ate the Cake?(思维) 题意 已知有三个嫌疑人,有两个证人,每个证人可以指出其中一个嫌疑人不是罪犯,如果可以排除两个嫌疑人来确定犯人,输出犯人的身份,如果无法确定,输出"-1"。 分析 …

PostgreSQL基本使用

参考文档:PostgreSQL基本使用与数据备份_postgresql 数据备份-CSDN博客 一、数据库的操作 1. 本机登录 2.创建新用户来访问 PostgreSQL 3 重启数据库服务 4.创建数据库并查看数据库 5.连接数据并删除数据库 6.建表插入数据,查看数据库下所有的表&#…

核函数的介绍

1.核函数的介绍: 1、用线性核等于没有用核。 2、多项式核:随着d越大,则 fai(X) 对应的维度将越高。(可以通过d得到对应的fai(X)函数)。 3、高斯核函数:无限维度。 4、tanh核。 2.如何选择核函数的参数&am…

【从零开始实现stm32无刷电机FOC】【理论】【2/6 SVPWM数学模型】

目录 线性调制区扇区pwm计算桥臂pwm计算纯c语言代码验证目标磁矢量为笛卡尔坐标系形式的推导结束 上一节,我们找到了一种控制线圈合成磁矢量的方法— SVPWM,但是仅停留在逻辑层面上。本节对SVPWM进行数学推导,给出最终的线圈控制函数。本节的…

勒索软件分析_Conti

0. Conti介绍 勒索软件即服务(Ransomware as a Service,RaaS)变体 Conti 推出还不到两年,已经进行了第七次迭代。Conti被证明是一种敏捷而熟练的恶意软件威胁,能够自主和引导操作,并具有无与伦比的加密速度…

SAP HCM WPBP的几个变量含义

WPBP起源 WPBP是SAP HCM的主数据的集合内表,集合、内表这两个名词如何理解,集合就是多个主数据的汇总,内表是ABAP的几个数据结构,就和我们EXCEL的多行一行。 wpbp数据来源 WPBP的主数据来源于SAP HCM 0000、0001、0007、0027、0008信息类型的汇总,SAP HCM是以时间轴为核心…

揭秘《庆余年算法番外篇》:范闲如何使用维吉尼亚密码解密二皇子密信

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣! 推荐:数据分析螺丝钉的首页 格物致知 终身学习 期待您的关注 导航: LeetCode解锁100…

有趣的css - 加减动态多选框

大家好,我是 Just,这里是「设计师工作日常」,今天分享的是用 css 实现一个适用树形菜单场景的加减动态多选框。 最新文章通过公众号「设计师工作日常」发布。 目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页面…

SQL SERVER 我没有消失,SQL SERVER下一个版本是2025 (功能领先大多数数据库)

开头还是介绍一下群,如果感兴趣PolarDB ,MongoDB ,MySQL ,PostgreSQL ,Redis, Oceanbase, Sql Server等有问题,有需求都可以加群群内有各大数据库行业大咖,可以解决你的问题。加群请联系 liuaustin3 ,(共2320人左右 1 …

github加速访问及资源一秒代理下载

如果你想加速打开github网页,可以采用以下方法,仅需一个插件。 1.代理加速访问 打开gitee网站,搜索dev-sidecar关键字,然后找到星星最多的项目 可以阅读项目说明,找到感兴趣的内容或是直接下载DevSidecar桌面应用程序…

C语言笔记21 •模拟atoi函数•

1.atoi的使用 atoi是将字符串转化为int类型数字的一个库函数 int main() { char str[] "123568"; int a; a atoi(str); /*将字符串转化为int型的数字*/ printf("%d\n", a); } 2.模拟atoi函数 #define _CRT_SECURE_NO_WARNINGS…

MyBatis-Plus 从入门到精通

MyBatis-Plus 从入门到精通 前言快速入门创建一个SpringBoot项目导入依赖配置数据库创建一个实体类创建一个mapper接口在SpringBoot启动类上配置mapper接口的扫描路径在数据库中创建表编写一个SpringBoot测试类 核心功能注解CRUD接口Mapper CRUD接口Service CRUD 接口条件构造器…