Android14 - 绘制系统 - 概览

从Android 12开始,Android绘制系统有结构性变化, 在绘制的生产消费者模式中,新增BLASTBufferQueue,客户端进程自行进行queue的生产和消费,随后通过Transation提交到SurfaceFlinger,如此可以使得各进程将缓存提交到SufrfaceFlinger后合并到同一事务后同步提交,在同一帧生效。实际上,从Android12到Android14整个绘制系统各个环节也都或大或小调整,比如Android13发布了1.3版本的Vulkan, Android14新增了TextureView,等等。本文基于Android14

Android 绘制系统整体架构:

从上到下可以理解为“生产者(Producer)”到“消费者(Consumer)”处理过程

首先WindowManagerService角度每个窗口称为Window一个Window一般一个APP页面或者Status Bar或者Navigation Bar或者WallPaper这些一个个Window。WindowManagerService(WMS)作为服务端对所有客户端窗口添加、层级、布局等进行统一管理WMS每个Window对应一个SurfaceSurface可以理解图像数据缓存持有者以及Canvas持有者Canvas画布提供绘制各种图形能力供开发使用。一个客户端窗口在建立之初,会先向WMS去申请一个SurfaceWMS创建Surface之后,通过binder返回客户端客户端Surface后,会去创建一个BLASTBufferQueue管理图像内存申请每次要使用Surface的Canvas进行绘制前,需要BLASTBufferQueue申请一块内存(dequeue),我们这里称为Buffer,然后生成图像数据写入Buffer。这个向BLASTBufferQueue申请Buffer并写入图像数据的过程,可以认为是“生产”阶段。随后,enqueue这个buffer,将其提交SurfaceFlinger去合成。这个阶段可以理解图像Buffer的“消费”阶段

SurfaceFlinger(SF负责Hardware沟通维护着设备挂载、VSync信号收发、Layer合成工作。WMS每个SurfaceSurfaceFlinger对应生成一个Layer对象客户端将某个Surface上的Buffer提交SurfaceFlinger,实际上就是更新对应LayerBuffer数据SurfaceFlinger调用HWComposer将这些Layer进行合成显示屏幕

AndroidHAL提供称为一个Hardware Composer组件用于隔离具体硬件的交互。Hardware Composer简称HWComposerHWC2(之所以2早期已有一个HWC版本支持软件合成)。SurfaceFlingerLayer数据交给HWComposer,各厂商来负责HWComposer合成接口具体实现合成完毕数据提交屏幕设备缓存(一般称为Frame Buffer)屏幕显示画面

上面过程可以拆解为几部分

  1. Surface创建与管理
  2. 客户端(EndPoint)绘制(Draw)渲染(Render)图像
  3. 第三部分是硬件Composition(合成)工作
  4. Vsync:由硬件产生信号用于同步framebuffer生产消费SurfaceFlingerVsync进行使用管理向上分发APPVsync是不断绘制驱动力,也是图像缓存有序投送到屏幕的重要机制。

现在分别讨论下四部分

  1. Surface的创建与管理

Surface创建过程中有几个角色贯穿其中

PhoneWindow一个Activity对应一个PhoneWindow代表一个应用窗口AMS创建Activity之初PhoneWindow服务端对应window对象(ActivityRecord)已经添加WMS

ViewRootImpl:其主要作用服务端通信承接外部触发绘制调用从而从上往下整个View树进行绘制可以把ViewRootImp理解为View的调度者ViewRootImp逻辑上View Hierarchy最顶层并不是一个真正View持有一个View--DecorViewDecorView才是真正ViewView最上层,包含着Activity的画面内容。在Activity的resume阶段,ViewRootImplrelayout方法会将DecorView添加到WMS中,这样Activity的内容就显示了出来。逻辑上,我们可以把DecorView也理解为一个Window。Activity对应一个PhoneWindow,通过ViewRootImplDecorView在WMS端添加PhoneWindowWindow。

WMS的Session客户端一个进程对应WMS一个Session客户端持有Sessionbinder客户端窗口添加事务客户端都是通过这个SessionWMS通信

WindowContainerWMS管理系统整体Window体系包括位置层级关系通过WindowContainer这个表达一个WindowDisplayContent代表一个屏幕级别WindowDisplayArea代表一块屏幕一块区域比如平板等大屏幕设备可能一块屏幕上同时显示多个应用区域此时就用DisplayArea表达WindowToken简单理解为对应一个客户端Window比如一个应用Activity,这里需要注意的是,Activity的WindowToken是作为ActivityRecord存在的,也就是说ActivityRecord是WindowToken的子类。而Activity具体内容承载者,DecorView对应WindowState上面所有DisplayContentDisplayAreaWindowTokenWindowState都是WindowContainer子类,这些Window在WMS内是以window树的形式组织起来的。事实上DisplayContent下面还有一个层级称为Feature具体层级结构Android12 - WMS之WindowContainer树(DisplayArea)_android windowcontainer-CSDN博客客户端通过Session接口调用添加DecorViewWMS生成一个对应WindowState对象将其作为Activity对应ActivityRecord(也就是WindowToken)window

SurfaceControl:在WMS端,每个WindowContainer对应一个SurfaceControlSurfaceControlWMS端管理Surface具体对象,在WMS端,可以理解一个SurfaceControl就代表一个Surface。SurfaceControl在SurfaceFlinge端对应一个Layer,持有一个layer的句柄handle。所有绘制动作最后提交SurfaceFinger作为Layer去合成。SurfaceControl作用或者Surface作用主要客户端窗口SurfaceFlingerLayer关联起来客户端Add一个DecorView WMS对应创建WindowState同时创建一个SurfaceControl、Layer随后SurfaceControl返回客户端客户端拿到SurfaceControl之后转换成Surface后续绘制就在这个Surface进行

SurfaceComposerClient是一个Binder主要作用是SurfaceControl调用SurfaceFlinger过程中,作为一个通道角色由于SurfaceControlWMS客户端持有所以客户端WMS都可以通过这个通道调用SF比如Layer创建、Graphihc Buffer提交

1. 客户端绘制和渲染

客户端通过Surface中提供的Canvas进行绘制Canvas基于Skia的SKCanvas。Skia(https://skia.org/)是Google管理的开源2D(也可以支持3D)图像库,目前AndroidGoogle ChromeChromeOS、Mozilla FireFoxFireFoxOS使用Skia作为绘制引擎。Skia可以集成OPEN GL和Vulkan进行3D绘制Android Q以后Skia作用加强即使硬件加速场景中绘制也会封装成Skia的GrOpList再提交给GPU。Android 14 Skia目录external/skia

渲染的过程是将画好的图像,进行栅格化(Rasterizer),变成一个个像素,这是一个非常耗时的过程。Android 3以前支持软件渲染Software Render过程如下:

APPViewonDraw阶段使用Canvas绘制通过Skia进行软件栅格化,通过CPU计算,将绘制内容转化成一个个像素信息,随后投送给屏幕进行显示。由于软件渲染效率低,当下软件渲染只是作为兼容方案得以保留,默认使用硬件加速。

硬件加速的流程简单表述如下:

Android硬件加速相关能力封装hwui组件hwui地址platform/frameworks/base/libs/hwui

硬件加速模式下APPonDraw通过Canvas绘制内容最终封装DisplayList一个个GrOp绘制命令然后通过OpenGL或者Vulkan交由GPU进行渲染随后结果投送屏幕显示具体使用OpenGL还是Vulkan可选择早期Android使用OpenGL由于Vulkan支持多线程渲染性能方面优势Android逐渐倾向使用Vulkan进行渲染另外,在哪些维度上进行硬件加速也是可选

整体使用硬件加速情况如果某个View绘制暂时不支持硬件加速,或者在某些位移动画上为了减少渲染成本,可以动过设置ViewlayerType = LAYER_TYPE_SOFTWARE单纯某个特定View使用Software Render。

硬件加速除了利用GPU加速渲染效率 本身计算渲染范围相较软件渲染更加高效软件渲染每次更新一个View局部将使得整个View hierarchy重新渲染硬件加速标注变化部分,所谓damage area,将绘制指令保存DisplayList中,如此大大提高渲染速度

OpenGL ES VS Vulkan

以下OpenGL ESVulkanAndroid发布版本历史

Vulkan作为一个面向更低级别规范、跨平台的API,可以提供更细粒度的内存管理和资源管理

以下VulkanOpenGL ES使用率(from GDC 2023 https://www.youtube.com/watch?v=C7OjI7CpjLw&t=1188s):

对于未来计划OpenGL ES将不会再有功能更新功能只会Vulkan支持因此Vulkan未来Android主推渲染引擎

无论OpenGL还是Vulkan都需要GPU的支持例如常见的车载高端芯片高通8155明确标明支持: OpenGL ES 3.xVulkanhttps://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/qul7413_sa8155_productbrief_r4.pdf

2. HW Composer(HWC2)图像合成

前面提到过,每个window对应一个SF中的Layer合成(Composition)工作就是这些Layer进程合并一个完整屏幕内容提交给硬件屏幕显示出来大概过程如下

页面LayerStatusBarNavigationBar中间APP内容页面,其中可能会有重叠的部分,称为Overlay。Composition工作就是将这三个Layer合并一个画面,计算重叠部分的颜色,提交屏幕显示出来

合成工作发生在渲染后的内容提交给SurfaceFlinger之后。大致流程如下

合成硬件合成的部分软件合成部分。硬件合成除了更高效的同时,可以合成工作GPU解放出来,提高GPU效率,节省能耗。嵌入式设备的SOC中,硬件合成一般独立DPU(Display Processing)完成

比如高通SA8155这款SOC布局如下

其中GPU部分负责渲染,“Dispay Processing”的部分用来处理合成工作

由于硬件合成Layer数量是限制例如高通QCS2290支持4个Layer、AMD有的芯片支持7)以及Layer的PixelFormat(比如支持PIXEL_FORMAT_RGBA_8888不支持YUV)是限制的,因此硬件合成之前如果合成Layer过多或者Format不满足需要使用GPU先进行一轮软件合成合并或转换一些Layer格式

软件合成过程。(Google I/O '18)

4. VSYNC

VSync简介:

首先关注两个重要概念

refresh rate - 60Hz 代表每秒钟屏幕可以更新多少次这一值早期是固定依赖于硬件现代旗舰设备屏幕支持多个刷新率60Hz~165Hz不等而且是可以App定制刷新率

frame rate秒钟GPU可以绘制多少越大越好

VSync一个通用概念LinuxPC移动设备实现

想象一下绘制过程是这样的:GPU绘制数据,将绘制结果投掷给屏幕显示出来

问题是refresh rateFrame Rate并不保证一致频率,也就是是说GPU渲染的时间并不能保证就正好是16ms(60Hz)内完成的。如果只有一块内存(Frame Buffer)用来交换数据,假如Refresh Rate大于Frame Rate由于GPU从上到下写这块内存的在当屏幕来取数据的时候,GPU刚刚在旧基础上一半此时就会出现图片撕裂问题

解决方法是双缓存方案

提供Back Buffer和Frame Buffer两个缓存,屏幕始终Frame Buffer数据显示GPU往Back BufferGPU完全数据写好Back Buffer整个拷贝Frame Buffer这样就能保证屏幕每次完整

此时仍有一个问题如果GPU的Frame Rate大于屏幕Refresh Rate那么屏幕下一可能GPU写完好几就会出现丢帧现象此时就需要VSync

屏幕根据自己的刷新频率,去给上层发送一个VSync信号GPU拿到这个VSync信号绘制这样就能同步屏幕上层绘制节奏

如果屏幕Refresh Rate大于GPUFrame Rate怎么

屏幕将会仍然显示旧帧。比如中间方框两次刷新屏幕仍然显示前一次内容

Android的VSYNC

实际上Android的VSync要复杂得多,主要由SurfaceFlinger负责实现。通过之前的介绍我们知道一帧的绘制过程有APP绘制渲染SurfaceFlinger合成Display硬件读取帧缓存显示图片三个阶段,如果每一个阶段都依赖VSync信号来执行,那可能会出现这种情况:

也就是VSync1时候APP正在绘制渲染SF还没有可以合成东西所以什么不做等到VSync2时候Render1工作已经完成可以合成VSync3时候合成做完了才可以显示屏幕上绘制渲染显示经历3VSync面对这种情况AndroidVSync设计如下

有三种信号

HW_VSYNC_[ID]底层硬件按Refresh Rate的频率发出,一般为60Hz、90Hz、120H等等,随后会通过HWC通知SurfaceFlinger

VSYNC-app:SurfaceFlinger通知给上层应用VSYNC用于控制和驱动应用绘制渲染

VSYNC-sf:通知给SurfaceFlinger自身的,用于合成Layer信号

VSYNC-appVSYNC-sfHW_VSYNC_[ID]并不是同步发送而是有一定延迟,称为相位差HW_VSYNC_[ID]VSYNC-app发出时间差称为app phaseHW_VSYNC_[ID]VSYNC-sf发出时间差称为sf phase这种设计好处是如果同一个VSync周期内,经sf phase后在执行合成时恰好前一步Render完成就可一个周期完成不用非得下一个VSync

另外Android并非直接硬件HW_VSYNC_[ID]信号直接分发应用SurfaceFlinger而是通过先收集HW_VSYNC_[ID]样本,再根据屏幕Refresh Rate、预先配置的相位差等信息,经过计算模拟出来VSYNC-appVSYNC-sf

由于只需要一定的硬件VSync样本便可以模拟出预期VSYNC-appVSYNC-sf因此并不需要一直HW_VSYNC_[ID]信号收到足够样本(在Android 14中为6个)就可以关闭硬件VSync每次合成数据提交屏幕返回一个硬件VSync时间戳(PresentFence),此时SF对比当前模拟VSync硬件VSync是否误差过大如果过大重新打开硬件VSync收集样本重新计算另外每次终端应用主动请求VSync判断前后两次模拟VSync时间差是否超过750ms如果重新请求打开硬件VSyncsystrace硬件VSyncTAGHW_VSYNC_ON_[ID]

参考资料https://source.android.com/docs/core/graphics/implement-vsync

可变刷新率

现代旗舰机屏幕刷新率可变,比如Pixel 5:

可以看到屏幕是支持60Hz90Hz两种刷新率

而且应用层可以在应用级别、窗口级别指定具体刷新率经过应用指定最终刷新率并不一定指定而是经过SurfaceFlinger综合计算得出具体见https://developer.android.com/media/optimize/performance/frame-rate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/644211.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Golang | Leetcode Golang题解之第111题二叉树的最小深度

题目&#xff1a; 题解&#xff1a; func minDepth(root *TreeNode) int {if root nil {return 0}queue : []*TreeNode{}count : []int{}queue append(queue, root)count append(count, 1)for i : 0; i < len(queue); i {node : queue[i]depth : count[i]if node.Left …

软件项目详细设计说明书实际项目参考(word原件下载及全套软件资料包)

系统详细设计说明书案例&#xff08;直接套用&#xff09; 1.系统总体设计 2.性能设计 3.系统功能模块详细设计 4.数据库设计 5.接口设计 6.系统出错处理设计 7.系统处理规定 软件开发全文档下载&#xff08;下面链接或者本文末个人名片直接获取)&#xff1a;软件开发全套资料-…

转行一年了

关注、星标公众号&#xff0c;直达精彩内容 ID&#xff1a;技术让梦想更伟大 整理&#xff1a;李肖遥 来公司一年了。 说是转行其实还是在半导体行业&#xff0c;熟悉我的朋友知道 &#xff0c;我在18年开始进入半导体行业&#xff0c;那个时候想着行业很重要&#xff0c;站对了…

高校网站群及融媒体中心建设方案

一、项目背景 随着信息技术的飞速发展&#xff0c;互联网已成为高校展示形象、传播信息、服务师生、沟通社会的重要渠道。然而&#xff0c;目前许多高校在网站建设和媒体传播方面存在以下问题&#xff1a; 网站分散、缺乏统一规划&#xff1a;各高校内部往往存在多个部门或学院…

常见 JVM 面试题补充

原文地址 : 26 福利&#xff1a;常见 JVM 面试题补充 (lianglianglee.com) CMS 是老年代垃圾回收器&#xff1f; 初步印象是&#xff0c;但实际上不是。根据 CMS 的各个收集过程&#xff0c;它其实是一个涉及年轻代和老年代的综合性垃圾回收器。在很多文章和书籍的划分中&…

springboot里面自带的测试用法

1. 依赖项配置 首先&#xff0c;确保你的 pom.xml 或 build.gradle 文件中包含必要的依赖项。以下是 Maven 配置示例&#xff1a; <dependencies><!-- Spring Boot Starter Test --><dependency><groupId>org.springframework.boot</groupId>&l…

TypeScript-函数类型

函数类型 指给函数添加类型注解&#xff0c;本质上就是给函数的参数和返回值添加类型约束 function add(a: number,b: number) :number {return a b } let res: number res add(2 3) // 函数参数注解类型之后&#xff0c;不但限制了参数的类型还限制了参数为必填 优点&…

【Flutter】有状态组件StatefulWidgetScaffold组件属性

&#x1f525; 本文由 程序喵正在路上 原创&#xff0c;CSDN首发&#xff01; &#x1f496; 系列专栏&#xff1a;Flutter学习 &#x1f320; 首发时间&#xff1a;2024年5月26日 &#x1f98b; 欢迎关注&#x1f5b1;点赞&#x1f44d;收藏&#x1f31f;留言&#x1f43e; 目…

HTML静态网页成品作业(HTML+CSS)——企业酒店官网网页(5个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有5个页面。 二、作品演示 三、代…

vue3 <script setup> 语法糖时间组件

<template><div><p>当前时间Current Time: {{ currentTime }}</p></div> </template><script setup> import { ref, onBeforeUnmount, onMounted } from vueconst currentTime ref()let interval // 声明 interval 变量const getTo…

ArcGIS提取含有计曲线的等高线

喜欢就关注我们吧&#xff01; 今天我么来看看&#xff0c;如何利用DEM提取含有计曲线的等高线&#xff01; 常规的话我们利用DEM提取的等高线都是不带计曲线的&#xff0c;无法把计曲线标注出来&#xff0c;今天我们就来看下&#xff0c;如何处理一下哦&#xff01;提取带有计…

uni-app 微信 支付宝 小程序 使用 longpress 实现长按删除功能,非常简单 只需两步

1、先看效果 2、直接上代码 ui结构 <view class"bind" longpress"deleteImage" :data-index"index"><view class"bind_left">绑定设备</view><view class"bind_right"><view class"bind_t…

gdc2024:Raytracing in Snowdrop技术实现与性能优化策略

在今年的GDC&#xff08;游戏开发者大会&#xff09;的Advanced Graphics Summit上&#xff0c;关于Snowdrop引擎中光线追踪技术的讨论引起了广泛关注。 一、光线追踪全局照明的实现细节 屏幕空间追踪&#xff1a; 屏幕空间追踪从相机出发&#xff0c;对屏幕上的每个像素点生成…

x264 码率控制中实现 VBV 算法源码分析

关于 VBV 的解释与原理可以参考x264 码率控制 VBV 原理。 x264中 VBV 算法执行的流程 vbv 参数配置相关函数 x264_param_default函数 功能:编码参数默认设置,关于 vbv的参数的默认设置;函数内vbv相关代码:/* ... */ //代码有删减 param->rc.i_vbv_max_bitrate = 0; par…

Java的类和对象

Java的类和对象 前言一、面向过程和面向对象初步认识C语言Java 二、类和类的实例化基本语法示例注意事项 类的实例化 三、类的成员字段/属性/成员变量注意事项默认值规则字段就地初始化 方法static 关键字修饰属性代码内存解析 修饰方法注意事项静态方法和实例无关, 而是和类相…

Pytorch深度学习实践笔记5

&#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;pytorch深度学习 &#x1f380;CSDN主页 发狂的小花 &#x1f304;人生秘诀&#xff1a;学习的本质就是极致重复! 视频来自【b站刘二大人】 目录 1 Linear Regress…

视觉与数据的和谐:数字孪生技术在UI设计中的艺术

视觉与数据的和谐&#xff1a;数字孪生技术在UI设计中的艺术 引言 在UI设计的世界里&#xff0c;视觉艺术与数据科学似乎相隔甚远&#xff0c;然而随着数字孪生技术的出现&#xff0c;这两者之间的界限变得模糊。数字孪生技术不仅是一种技术革新&#xff0c;更是一种艺术形式…

vue+elemntui 加减表单框功能样式

<el-form ref"form" :model"form" :rules"rules" label-width"80px"><el-form-item label"配置时间" prop"currentAllocationDate"><div v-for"(item,key) in timeList"><el-date…

Cortex-M3的SysTick 定时器

目录 概述 1 SysTick 定时器 1.1 SysTick 定时器功能介绍 1.2 SysTick 定时器功能实现 1.3 SysTick在系统中的作用 2 SysTick应用的实例 2.1 建立异常服务例程 2.2 使能异常 2.3 闹钟功能 2.4 重定位向量表 2.5 消灭二次触发 3 SysTick在FreeRTOS中的应用 3.1 STM…

【编译原理】LL(1)预测分析法

一、实验目的 LL(1)的含义&#xff1a;第一个L表明自顶向下分析是从左向右扫描输入串&#xff0c;第2个L表明分析过程中将使用最左推导&#xff0c;1表明只需向右看一个符号便可决定如何推导&#xff0c;即选择哪个产生式进行推导。 LL(1) 预测分析方法是确定的自顶向下的语…