【C++STL详解(四)------vector的模拟实现】

文章目录

  • vector各函数接口总览
  • vector当中的成员变量介绍
  • 默认成员函数
      • 构造函数1
      • 构造函数2
      • 构造函数3
      • 拷贝构造函数
      • 赋值运算符重载函数
      • 析构函数
  • 迭代器相关函数
      • begin和end
  • 容量和大小相关函数
      • size和capacity
      • reserve
      • resize
      • empty
  • 修改容器内容相关函数
      • push_back
      • pop_back
      • insert
      • erase
      • swap
  • 访问容器相关函数
      • operator[ ]

vector各函数接口总览

namespace zpl
{

  template<class T>

  class vector

  {
  public:
    // Vector的迭代器是一个原生指针
    typedef T* iterator;
    typedef const T* const_iterator;

    iterator begin();

    iterator end();

    const_iterator cbegin()const

    const_iterator cend() constvector()vector(int n, const T& value = T())template<class InputIterator>

    vector(InputIterator first, InputIterator last)vector(const vector<T>& v);

    vector<T>& operator= (vector<T> v)~vector()// capacity

    size_t size() const ;

    size_t capacity() constvoid reserve(size_t n)void resize(size_t n, const T& value = T())///access///

    T& operator[](size_t pos)const T& operator[](size_t pos)const///modify/

    void push_back(const T& x)void pop_back()void swap(vector<T>& v);

    iterator insert(iterator pos, const T& x);

    iterator erase(Iterator pos)private:

    iterator _start; // 指向数据块的开始

    iterator _finish; // 指向有效数据的尾

    iterator _endOfStorage; // 指向存储容量的尾

  };
}

vector当中的成员变量介绍

在vector当中有三个成员变量_start、_finish
_endofstorage。
在这里插入图片描述
_start指向容器的头,_finish指向容器当中有效数据的尾,_endofstorage指向整个容器的尾。

默认成员函数

构造函数1

编译器会自动支持一个无参的默认构造函数,当我们重载了其它的构造函数,编译器就不会提供了,现在我们想要使用无参的构造函数,就必须自己手动添加了。

//无参的构造函数
vector()
	:_start(nullptr)
	,_finish(nullptr)
	,_endofstorage(nullptr)
{}

构造函数2

ector还支持使用一段迭代器区间进行对象的构造。因为该迭代器区间可以是其他容器的迭代器区间,也就是说该函数接收到的迭代器的类型是不确定的,所以我们这里需要将该构造函数设计为一个函数模板。

//利用一段迭代区间构造
template<class InputIterator>
vector(InputIterator first, InputIterator last)
	: _start(nullptr)
	, _finish(nullptr)
	, _endofstorage(nullptr)
{
	reserve(last - first);	//避免构造空容器的构造,和频繁调用扩容
	//干脆直接扩容,然后不停尾插就行了
	while (first != last)
	{
		push_back(*first);
		first++;
	}

构造函数3

vector容器还支持一种构造,就是n个val值的填充,
直接复用resize,后面会实现

vector(size_t n, const T& val = T())
{
	resize(n, val);
}

注意:该构造函数还需要实现两个重载函数。

因为当使用这样构造时,会运行崩溃。

vector<int>v(5,3)

因为当使用这样构造时,编译器并不会调用构造函数3而会调用构造函数2,而构造函数2中对int内置类型进行解引用会程序崩溃,为了让编译器调用构造函数三,必须重载如下两个版本:

vector(int n, const T& val = T())
{
	resize(n, val);
}
vector(long n, const T& val = T())
{
	resize(n, val);
}

拷贝构造函数

vector的构造函数涉及深拷贝问题,这里提供两种深拷贝的写法:
1.传统写法:
拷贝构造的传统写法的思想是我们最容易想到的:先开辟一块与该容器大小相同的空间,然后将该容器当中的数据一个个拷贝过来即可,最后更新_finish和_endofstorage的值即可。

vector(const vector<T>& v)
{
	_start = new T[v.capacity()];
	//memcpy(_start, v._start, v.size() * sizeof(T));
	for (size_t i = 0; i < v.size(); i++)
	{
		_start[i] = v[i];
	}
	_finish = _start+size();
	_endofstorage = _start + v.capacity();
}

**注意:**将容器当中的数据一个个拷贝过来时不能使用memcpy函数,当vector存储的数据是内置类型或无需进行深拷贝的自定义类型时,使用memcpy函数是没什么问题的,但当vector存储的数据是需要进行深拷贝的自定义类型时,使用memcpy函数的弊端就体现出来了。例如,当vector存储的数据是string类的时候。
在这里插入图片描述
每个sting对象都有自己指向的那一块空间。
在这里插入图片描述
如果此时我们使用的是memcpy函数进行拷贝构造的话,那么拷贝构造出来的vector当中存储的每个string的成员变量的值,将与被拷贝的vector当中存储的每个string的成员变量的值相同,即两个vector当中的每个对应的string成员都指向同一个字符串空间。
在这里插入图片描述
这样析构时就会析构两次程序崩溃。

解决办法:
在这里插入图片描述
看似是赋值操作,其实两个string类型对象赋值时,string会去调用它自己的赋值运算符重载,完成深拷贝,结果如下:

在这里插入图片描述
总结: memcpy使用浅拷贝对于内置类型和不需要深拷贝的自定义类型来说是可以的,但遇到像string这种自定义类型,必须要深拷贝,那么我们就不能用memcpy函数了,要调用自定义类型自己的深拷贝。

写法二:现代写法
先调用reserve扩容到与v容量相同,再利用范围for将每个元素push_back尾插过来即可

	//现代写法
	vector(const vector<T>& v)
	{
		reserve(v.capacity());
		for (cosnt auto& e : v)
		{
			push_back(e);
		}
	}

注意: 在使用范围for对容器v进行遍历的过程中,变量e就是每一个数据的拷贝,然后将e尾插到构造出来的容器当中。就算容器v当中存储的数据是string类,在e拷贝时也会自动调用string的拷贝构造(深拷贝),所以也能够避免出现与使用memcpy时类似的问题。

赋值运算符重载函数

vector的赋值运算符重载当然也涉及深拷贝问题,我们这里也提供两种深拷贝的写法:
1.传统写法:
首先判断是否是给自己赋值,若是给自己赋值则无需进行操作。若不是给自己赋值,则先开辟一块和容器v大小相同的空间,然后将容器v当中的数据一个个拷贝过来,最后更新_finish和_endofstorage的值即可。

vector<T>& operator=(const vector<T>& v)
{
	if (this != &v)
	{
		delete[] _start;
		_start = new T[v.capacity()];
		for (size_t i = 0; i < v.size(); i++)
		{
			_start[i] = v[i];
		}
		_finish = _start + v.size();
		_endofstorage = _start + v.capacity();
	}
	return *this;	//支持连续赋值
}

8注意: 这里和拷贝构造函数的传统写法类似,也不能使用memcpy函数进行拷贝。

2.现代写法:
赋值运算符重载的现代写法非常精辟,首先在右值传参时并没有使用引用传参,因为这样可以间接调用vector的拷贝构造函数,然后将这个拷贝构造出来的容器v与左值进行交换,此时就相当于完成了赋值操作,而容器v会在该函数调用结束时自动析构。

//现代写法
vector<T>& operator=(vector<T> v)
{
	swap(v);
	return *this;
}

注意: 赋值运算符重载的现代写法也是进行的深拷贝,只不过是调用的vector的拷贝构造函数进行的深拷贝,在赋值运算符重载函数当中仅仅是将深拷贝出来的对象与左值进行了交换而已。

析构函数

对容器进行析构时,首先判断该容器是否为空容器,若为空容器,则无需进行析构操作,若不为空,则先释放容器存储数据的空间,然后将容器的各个成员变量设置为空指针即可。

~vector()
{
	if (_start)
	{
		delete[] _start;
		_start = _finish = _endofstorage = nullptr;
	}
}

迭代器相关函数

vector当中的迭代器实际上就是容器当中所存储数据类型的指针。

typedef T* iterator;
typedef const T* const_iterator;

begin和end

vector当中的begin函数返回容器的首地址,end函数返回容器当中最后一个有效数据的后面一个地址。

iterator begin()
{
	return _start;
}
iterator end()
{
	return _finish;
}

我们还需要重载一对适用于const对象的begin和end函数,使得const对象调用begin和end函数时所得到的迭代器只能对数据进行读操作,而不能进行修改

const_iterator begin() const
{
	return _start;
}
const_iterator end() const
{
	return _finish;
}

因此vector的迭代器遍历就出来了

vector<int> v(10, 2);
vector<int>::iterator it = v.begin();
while (it != v.end())
{
	cout << *it << " ";
	it++;
}
cout << endl;

支持迭代器就支持范围for

vector<int> v(5, 3);
for (auto& e : v)
{
	cout << e << " ";
}
cout << endl;

容量和大小相关函数

size和capacity

在这里插入图片描述

size_t size() const
{
	return _finish - _start; //有效数据个数
}
size_t capacity() const
{
	return _endofstorage - _start; //总容量大小
}

reserve

reserve规则:
 1、当n大于对象当前的capacity时,将capacity扩大到n或大于n。
 2、当n小于对象当前的capacity时,什么也不做。
实现reserve还是比较轻松的,先判断要扩大到的容量n是否大于当前容量,大于就需要扩容,判断原容器是否为空容器,为空直接指向新开辟的tmp指向的那块空间,不为空,就需要提前计算好原容器有多少个有效数据,然后拷贝至新容器,再释放旧空间指向新空间就可以了,最后更新一下成员变量。

//一般不缩容,只扩容
void reserve(size_t n)
{
	if (n > capacity())
	{
		size_t sz = size();
		T* tmp = new T[n];
		if (_start)
		{
			for (size_t i = 0; i < sz; i++)
			{
				tmp[i] = _start[i];
			}
			delete[] _start;
		}
		_start = tmp;
		_finish = _start + sz;
		_endofstorage = _start + n;
	}
}

实现reserve函数需要注意两个细节:
细节一:需要提前记录好有效数据的个数,便于更新_finish
因为_start指向新空间后,_start已经不指向原来那块空间的首地址了,现在还是利用size()函数计算有效元素个数那就错了,所以_finish=_start+size()就更新错误结果了。
在这里插入图片描述
细节二:拷贝容器当中的数据时,不能使用memcpy函数进行拷贝。
由于memcpy函数拷贝是浅拷贝,那么当vector数据类型为string这种自定义类型时,拷贝的新容器的元素对象指向的那块空间和拷贝对象指向的空间是同一块空间,那么析构的时候,就会析构两次,导致程序崩溃。
在这里插入图片描述

所以说我们还是得用for循环将容器当中的string一个个赋值过来,因为这样能够间接调用string的赋值运算符重载,实现string的深拷贝。
在这里插入图片描述
这样析构就会各自释放自己对应的那块空间互不干扰。

resize

resize规则:
 1、当n大于当前的size时,将size扩大到n,扩大的数据为val,若val未给出,则默认为容器所存储类型的默认构造函数所构造出来的值。
 2、当n小于当前的size时,将size缩小到n。
注意如果容量不够,得先扩容

void resize(size_t n, const T& val = T())
{
	if (n < size())
	{
		_finish = _start + n;
	}
	else
	{
		if (n > capacity())
		{
			reserve(n);
		}
		while (_finish < _start + n)
		{
			*_finish = val;
			_finish++;
		}
	}
}

注意: 在C++当中内置类型也可以看作是一个类,它们也有自己的默认构造函数,所以在给resize函数的参数val设置缺省值时,设置为T( )即可。

empty

如果_finish与_start指向相同,说明没有有效数据。

	bool empty() const
	{
		return _start == _finish;
	}

修改容器内容相关函数

push_back

要尾插数据首先得判断容器是否已满,若已满则需要先进行增容,然后将数据尾插到_finish指向的位置,再将_finish++即可。

void push_back(const T& val)
{
	if (_finish == _endofstorage)
	{
		size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();
		reserve(newcapacity);
	}
	*_finish = val;
	_finish++;
}

pop_back

尾删数据之前也得先判断容器是否为空,若为空则做断言处理,若不为空则将_finish–即可。

void pop_back()
{
	assert(!empty());
	_finish--;
}

insert

insert函数可以在所给迭代器pos位置插入数据,在插入数据前先判断是否需要增容,然后将pos位置及其之后的数据统一向后挪动一位,以留出pos位置进行插入,最后将数据插入到pos位置即可。

iterator insert(iterator pos, const T& val)
{
	assert(pos >= _start && pos <= _finish);
	if (_finish == _endofstorage)
	{
		size_t len = pos - _start;
		size_t newcapacity = capacity() == 0 ? 4 : 2 * capacity();
		reserve(newcapacity);
		pos = _start + len;
	}
	iterator end = _finish - 1;
	while (end >= pos)
	{
		*(end + 1) = *end;
		--end;
	}
	*pos = val;
	_finish++;
	return pos;
}

注意: 若需要增容,则需要在增容前记录pos与_start之间的间隔,然后通过该间隔确定在增容后的容器当中pos的指向,否则pos还指向原来被释放的空间。

erase

erase函数可以删除所给迭代器pos位置的数据,判断pos位置是否合法,删除数据时直接将pos位置之后的数据统一向前挪动一位,将pos位置的数据覆盖即可。

iterator erase(iterator pos)
{
	assert(pos >= _start);
	assert(pos < _finish);
	iterator it = pos + 1;
	while (it < _finish)
	{
		*(it - 1) = *it;
		it++;
	}
	--_finish;
	return pos;
}

swap

swap函数用于交换两个容器的数据,我们可以直接调用库当中的swap函数将两个容器当中的各个成员变量进行交换即可。

void swap(vector<T>& v)
{
	std::swap(_start, v._start);
	std::swap(_finish, v._finish);
	std::swap(_endofstorage, v._endofstorage);
}

注意: 在此处调用库当中的swap需要在swap之前加上“::”(作用域限定符),告诉编译器这里优先在全局范围寻找swap函数,否则编译器会认为你调用的就是你正在实现的swap函数(就近原则)。

访问容器相关函数

vector也支持我们使用“下标+[ ]”的方式对容器当中的数据进行访问,实现时直接返回对应位置的数据即可。

operator[ ]

注意: 重载运算符[ ]时需要重载一个适用于const容器的,因为const容器通过“下标+[ ]”获取到的数据只允许进行读操作,不能对数据进行修改。

T& operator[](size_t pos)
{
	assert(pos < size());
	return _start[pos];
}
const T& operator[](size_t pos)	const
{
	assert(pos < size());
	return _start[pos];
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/642541.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenStack平台Keystone组件的使用

1. 规划节点 安装基础服务的服务器规划 IP地址 主机名 节点 192.168.100.10 controller Openstack控制节点 2. 基础准备 使用机电云共享的单节点的openstack系统&#xff0c;自行修改虚拟网络编辑器、网络适配器&#xff0c;系统用户名&#xff1a;root&#xff0c;密…

【数据分析面试】53.推送消息的分布情况(SQL)

题目 我们有两个表&#xff0c;一个是 notification_deliveries 表&#xff0c;另一个是包含 created 和购买 conversion dates 的 users 表。如果用户没有购买&#xff0c;那么 conversion_date 列为 NULL。 编写一个查询&#xff0c;以获取用户转换前的推送通知总数的分布情…

51 单片机[4]:数码管显示

目标&#xff1a; 一次显示一个数字&#xff1a;在数码管第三位显示6.同时显示多个不同数字&#xff1a;在数码管前三位分别显示1, 2, 3. 一、认识数码管 LED数码管&#xff1a;数码管是一种简单、廉价的显示器&#xff0c;是由多个发光二极管封装在一起组成“8”字型的器件…

零拷贝(Zero-Copy)

1.背景 现在有这样一个场景&#xff0c;我们需要在本地选择一个文件后&#xff0c;然后上传到网络上。 我们再看看文件的内容数据的具体搬运过程&#xff1a; 你会发现&#xff0c;在整个文件搬运的过程中&#xff0c;发生了多次的数据拷贝和上下文转换。 4次数据拷贝&#…

amis 联动效果触发的几种方式

联动效果实现主要俩种方式: 1.表达式实现联动,基于组件内或数据链的变量变化的联动 比如&#xff1a; "source": "/amis/api/mock2/options/level2?name${name} " (必须是这种字符串拼接形式,在data数据映射中表达式不会触发联动) 所有初始化接口链…

【Linux】中的常见的重要指令(中)

目录 一、man指令 二、cp指令 三、cat指令 四、mv指令 五、more指令 六、less指令 七、head指令 八、tail指令 一、man指令 Linux的命令有很多参数&#xff0c;我们不可能全记住&#xff0c;我们可以通过查看联机手册获取帮助。访问Linux手册页的命令是 man 语法: m…

【Spring Boot】深度复盘在开发搜索引擎项目中重难点的整理,以及遇到的困难和总结

&#x1f493; 博客主页&#xff1a;从零开始的-CodeNinja之路 ⏩ 收录文章&#xff1a;【Spring Boot】深度复盘在开发搜索引擎项目中重难点的整理&#xff0c;以及遇到的困难和总结 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 目录 什么是搜索引…

基于SpringBoot+Vue的人事管理系统

引言 目前,人事管理的系统大都是CS架构的大型系统,很少有面向机关,事业单位内部的基于BS架构的微型人事系统,因此.开发一个基于BS架构的人事信息管理系统是非常必要的.但是基于BS架构的人事系统对于安全是一个大的考验点.在人事信息系统中,功能需简单清晰,可操作性强,其次安全…

站在ESG“20+”新起点上,看中国ESG先锋探索力量

全链减碳、建设绿色工厂、打造零碳产品、守护生物多样性、向受灾群众捐助……不知你是否察觉&#xff0c;自“双碳”目标提出以来&#xff0c;一股“可持续发展热潮”正覆盖各行各业&#xff0c;并且渗透到我们衣食住行的方方面面。在资本市场&#xff0c;ESG投资热潮更是席卷全…

外汇天眼:风险预警!以下平台监管牌照被撤销!

监管信息早知道&#xff01;外汇天眼将每周定期公布监管牌照状态发生变化的交易商&#xff0c;以供投资者参考&#xff0c;规避投资风险。如果平台天眼评分过高&#xff0c;建议投资者谨慎选择&#xff0c;因为在外汇天眼评分高不代表平台没问题&#xff01; 以下是监管牌照发生…

Leetcode | 5-21| 每日一题

2769. 找出最大的可达成数字 考点: 暴力 数学式子计算 思维 题解 通过式子推导: 第一想法是二分确定区间在区间内进行查找是否符合条件的, 本题最关键的便是 条件确定 , 第二种方法: 一般是通过数学公式推导的,这种题目我称为数学式编程题 代码 条件判断式 class Solution { …

ViT:1 从DETR说起

大模型技术论文不断&#xff0c;每个月总会新增上千篇。本专栏精选论文重点解读&#xff0c;主题还是围绕着行业实践和工程量产。若在某个环节出现卡点&#xff0c;可以回到大模型必备腔调重新阅读。而最新科技&#xff08;Mamba,xLSTM,KAN&#xff09;则提供了大模型领域最新技…

探索微软Edge开发者工具:优化前端开发的艺术与科学

探索微软Edge开发者工具&#xff1a;优化前端开发的艺术与科学 引言&#xff1a;Edge开发者工具概览一、基础操作&#xff1a;步入DevTools的大门1.1 启动与界面布局1.2 快速导航与定制 二、元素审查与样式调整2.1 精准元素选取2.2 实时CSS编辑2.3 自动完成与内联文档 三、Java…

Spring Web MVC(2)

响应 Http响应的结果可以是数据也可以是静态页面可以针对响应设置状态码 Header信息 返回静态页面注解RestController和Controller 我们创建一个前端页面 package com.example.demo.demos.web.controller;import org.springframework.web.bind.annotation.RequestMapping; i…

【C++】<图形库> 三人成棋(面向对象写法)

目录 一、游戏需求 二、程序架构 三、代码实现 四、实现效果 五、已知BUG 一、游戏需求 构建一个五子棋游戏&#xff0c;在自定义棋盘宽度和高度的基础上&#xff0c;实现三人对战功能&#xff0c;并且能判定谁输谁赢。 二、程序架构 (1) 对象分析&#xff1a; 【1】 需…

Kata Containers零基础学习从零到一

文章目录 docker和Kata Containers的区别Docker容器共享宿主机内核每个容器实例运行在轻量级虚拟机&#xff08;MicroVM&#xff09;总结 通俗例子Kata Containers架构实际Kata Containers架构图解容器技术栈总结 agent和shim家长&#xff08;shim进程&#xff09;的角色保姆&a…

【开源】多语言大型语言模型的革新:百亿参数模型超越千亿参数性能

大型人工智能模型&#xff0c;尤其是那些拥有千亿参数的模型&#xff0c;因其出色的商业应用表现而受到市场的青睐。但是&#xff0c;直接通过API使用这些模型可能会带来数据泄露的风险&#xff0c;尤其是当模型提供商如OpenAI等可能涉及数据隐私问题时。私有部署虽然是一个解决…

【CSP CCF记录】201909-1 小明种苹果

题目 过程 #include<bits/stdc.h> using namespace std; int N,M; long long tree[1010]; int main() {cin>>N>>M;long long result0,max0;//result剩余苹果&#xff0c;max最大疏果个数 int id0;//id最大疏果的果树编号 for(int i1;i<N;i){long long b0…

手把手一起学习Python NumPy

NumPy 是用于处理数组的 python 库&#xff0c;NumPy 中的数组对象称为 ndarray&#xff0c;它提供了许多支持函数&#xff0c;使得利用 ndarray 非常容易。Numpy官方网址 NumPy 安装 使用pip安装NumPy 模块&#xff1a; pip install numpyNumPy 入门 创建numpy数组&#x…

Qt 在windows下显示中文

Qt在windows平台上显示中文&#xff0c;简直是一门玄学&#xff0c;经过测试&#xff0c;有如下发现&#xff1a; 1&#xff0c; 环境&#xff1a;Qt 5.15.2 vs2019 64位 win11系统 默认用Qt 创建的文件使用utf-8编码格式&#xff0c;此环境下 中文没有问题 ui->textE…