【传知代码】Modnet 人像抠图-论文复现

文章目录

  • 概述
  • 原理介绍
  • 核心逻辑
    • ModNet 的结构
  • 环境配置
    • WebUI
  • 小结

论文地址
论文GitHub

本文涉及的源码可从Modnet 人像抠图该文章下方附件获取

概述

人像抠图技术在多个领域有着广泛的应用场景,包括但不限于:

  1. 展馆互动拍照:展馆中使用的抠像拍照系统能够吸引用户,扩大展馆的知名度。用户可以通过抠像拍照软件体验丰富的拍照效果,从而愿意走进展馆。
  2. 商场引流:商场中的人流量较大,使用抠像拍照系统可以吸引更多顾客前来打卡拍照,聚集人气,引发潮流现象。
  3. 展会展示:展会中使用抠像拍照系统,不仅能给参观者留下回忆,还能展示上次展会使用抠像拍照软件所拍的照片,增加用户对参展商的好感。
  4. 图像编辑:在图像编辑软件中,人像抠图是常用操作之一。通过抠图可以将人物从原背景中分离出来,放到新背景中,实现人物换背景的效果。这在电影后期特效、游戏角色置换等领域有很广泛的应用。
  5. 商业广告:广告制作公司通常需要从各种原始图像中抠出人物,用于广告海报、网站设计、产品宣传等。使用AI人像分割技术,可以减少制作时间,提高制作效率,更加快速准确地实现广告设计。
  6. 数码相册:AI人像分割人像抠图技术可以帮助数码相册用户抠出自己照片中的人物,使得相册的美观程度得到大幅提升。
  7. 视频制作:在视频制作中,使用AI人像分割技术可以轻松地将视频中的人物与背景分离,提高视频制作的效率和品质。
  8. 电商行业:AI抠图技术可以快速地抠出商品图片,帮助商家实现更好的商品展示效果,提高销售量。同时,也可以帮助商家更快速地制作广告、海报等宣传素材。

随着技术的不断进步和应用场景的不断扩展,人像抠图技术将在更多领域发挥重要作用。

原理介绍

人像抠图(Portrait matting)旨在预测一个精确的 alpha 抠图,可以用于提取给定图像或视频中的人物。

MODNet 是一个轻量级的实时无 trimap 人像抠图模型, 与以往的方法相比,MODNet在单个阶段应用显式约束解决抠图子目标,并增加了两种新技术提高效率和鲁棒性。

MODNet 具有更快的运行速度,更准确的结果以及更好的泛化能力。简单来说,MODNet 是一个非常强的人像抠图模型。下面两幅图展示了它的抠图效果。

在这里插入图片描述

核心逻辑

ModNet 的结构

在这里插入图片描述

ModNet 基于三个基础模块构建:

  • 语义预测(semantic estimation),
  • 细节预测(detail prediction),
  • 语义-细节混合(semantic-detail fusion)。

分别对应图中的左下(S)、上(D)、右下(F)三个模块。

语义预测主要作用于预测人像的整体轮廓,但是仅仅是一个粗略的前景 mask,用于低分辨率监督信号。细节预测用于区分前景与背景的过度区域,判断该区域内的点属于前景还是背景,可以预测边缘细节,用于高分辨率监测信号。两个相结合便可以实现整体的人像分离。

语义预测模块(S)中使用 channel-wise attention 的 SE-Block。监督信号为使用下采样及高斯模糊后的GT,损失函数采用L2-Loss。

在这里插入图片描述

MODNet 中使用 SOC 作为自监督学习策略。在不输入 trimap 的前提下,三个模块之间存在不一致性,所以需要保持三者的一致从而得到一个较好的结果。其具体策略为:

  1. F 模块与 D 模块在 unknown 区域的取值一致
  2. F 模块与 S 模块在确定前景与背景区域的取值一致

环境配置

运行 pip install -r requirements.txt 安装所需依赖,并确保你的环境中安装有 PyTorch。在文件夹中运行 python webui.py 即可启动网站,在浏览器中访问 http://0.0.0.0:8080/ 即可进入网页。

官方并没有给出训练代码以及训练数据集,因此本文主要介绍推理的步骤。

项目的结构如下图

在这里插入图片描述

首先导入库并加载模型,工作目录为代码所在文件夹。

import gradio as gr
import os, sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from src.models.modnet import MODNet
import numpy as np
from PIL import Image

modnet = MODNet(backbone_pretrained=False)
modnet = nn.DataParallel(modnet)
ckpt_path = "./pretrained/modnet_photographic_portrait_matting.ckpt"
    
if torch.cuda.is_available():
        modnet = modnet.cuda()
        weights = torch.load(ckpt_path)
else:
    weights = torch.load(ckpt_path, map_location=torch.device('cpu'))
modnet.load_state_dict(weights)
modnet.eval()

ref_size = 512

之后加载图片并处理数据,此处加载名称为1的图片。

在这里插入图片描述

image = '1.jpg'
im = Image.open(image)
im = np.asarray(im)

if len(im.shape) == 2:
    im = im[:, :, None]
if im.shape[2] == 1:
    im = np.repeat(im, 3, axis=2)
elif im.shape[2] == 4:
    im = im[:, :, 0:3]

im_transform = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ]
)

im = Image.fromarray(im)
im = im_transform(im)
im = im[None, :, :, :]
im_b, im_c, im_h, im_w = im.shape
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
    if im_w >= im_h:
        im_rh = ref_size
        im_rw = int(im_w / im_h * ref_size)
    elif im_w < im_h:
        im_rw = ref_size
        im_rh = int(im_h / im_w * ref_size)
    else:
        im_rh = im_h
        im_rw = im_w
im_rw = im_rw - im_rw % 32
im_rh = im_rh - im_rh % 32
im = F.interpolate(im, size=(im_rh, im_rw), mode='area')

得到可以处理的数据im后,投入模型进行推理。将得到的结果保存为名为 temp.png 的图片。

_, _, matte = modnet(im.cuda() if torch.cuda.is_available() else im, True)
matte = F.interpolate(matte, size=(im_h, im_w), mode='area')
matte = matte[0][0].data.cpu().numpy()
matte_temp = './temp.png'

运行之后得到结果,可以看见模型很好的得到了人像

在这里插入图片描述

WebUI

在原项目的基础上,构建了一个 WebUI 方便大家进行操作,界面如下所示

在这里插入图片描述

拖拽你想抠图的人像到左侧的上传框中,点击提交,等待片刻即可在右侧得到对应的结果。此处使用 flickr 的图片进行演示。

在这里插入图片描述

模型推导的 mask 会暂时保存在 temp 文件夹中,例如上面的图像得到的就是下图:

在这里插入图片描述

小结

在深度学习中,人像抠图通常使用全卷积网络(FCN)或类似U-Net的编解码器架构来实现。这些网络模型通过训练学习如何区分图像中的人像和背景,并生成一个掩码(mask),该掩码标识了人像的像素位置。

实现高质量的人像抠图:

  1. 选择适当的模型架构:你可以考虑使用U-Net、DeepLab、Mask R-CNN等流行的语义分割模型作为基础。这些模型已经在多个数据集上证明了其有效性。
  2. 收集并标注数据集:为了训练你的模型,你需要一个包含人像和背景标注的图像数据集。你可以使用开源数据集,如PASCAL VOC、COCO或自定义数据集。确保数据集足够大且多样化,以涵盖不同场景下的人像。
  3. 数据增强:为了提高模型的泛化能力,你可以应用各种数据增强技术,如旋转、缩放、裁剪、翻转和颜色变换等。
  4. 损失函数:选择适当的损失函数对于训练高质量的抠图模型至关重要。常用的损失函数包括交叉熵损失、Dice损失、Focal损失等。你可以根据你的任务需求和数据集特点选择合适的损失函数或组合使用。
  5. 优化器和学习率调度:选择合适的优化器(如Adam、SGD等)和学习率调度策略(如固定学习率、阶梯学习率衰减等)对于模型的训练过程至关重要。确保你的模型能够稳定地收敛并达到最佳性能。
  6. 后处理:在生成最终的人像抠图结果之前,你可以应用一些后处理技术来改进结果。例如,你可以使用形态学操作(如膨胀、腐蚀)来平滑掩码的边界,或者使用条件随机场(CRF)等模型来进一步优化掩码的质量。
  7. 评估与调整:在训练过程中和训练结束后,使用适当的评估指标(如像素准确率、IoU等)来评估你的模型性能。根据评估结果调整模型的超参数或架构以提高性能。

人像抠图是一个具有挑战性的任务,特别是在处理复杂背景和遮挡情况时。因此,你可能需要多次迭代和调整你的模型以达到最佳性能。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/638971.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

K8S认证|CKA题库+答案| 11. 创建PVC

11、创建PVC 您必须在以下Cluster/Node上完成此考题&#xff1a; Cluster Master node Worker node ok8s master …

玩转OpenHarmony智能家居:如何实现开发版“碰一碰”设备控制

一、简介 “碰一碰”设备控制&#xff0c;依托NFC短距通信协议&#xff0c;通过碰一碰的交互方式&#xff0c;将OpenAtom OpenHarmony&#xff08;简称“OpenHarmony”&#xff09;标准系统设备和全场景设备连接起来&#xff0c;解决了应用与设备之间接续慢、传输难的问题&…

Java web应用性能分析之【高并发之缓存-多级缓存】

说到缓存&#xff0c;作为java开发第一时间想到的是不是上图所示的Redis&#xff0c;又或者是Guava Cache、Caffeine、EhCache这些&#xff1b;Redis作为分布式缓存、其他的可以作为本地缓存。但是作为一名资深开发人员&#xff0c;着眼的层面应该再提升一个级别&#xff0c;从…

LLM多模态——GPT-4o改变人机交互的多模式 AI 模型应用

1. 概述 OpenAI 发布了迄今为止最新、最先进的语言模型 – GPT-4o也称为“全“ 模型。这一革命性的人工智能系统代表了一次巨大的飞跃&#xff0c;其能力模糊了人类和人工智能之间的界限。 GPT-4o 的核心在于其原生的多模式特性&#xff0c;使其能够无缝处理和生成文本、音频…

微信小程序开发环境的搭建

一、注册微信小程序账号 二、安装微信开发者工具 1.下载微信开发者工具。 官网下载地址&#xff1a;https://mp.weixin.qq.com/debug/wxadoc/dev/devtools/downloads.html 2、选择稳定版Window64下载安装 3、下载完毕后&#xff0c;点击下一步安装 三、使用微信开发者工具…

slam14讲(第8讲、前端里程计)LK光流、直接法

直接法的引出 因为第7讲大部分都是讲特征点法&#xff0c;通过提取orb特征点和点的描述子&#xff0c;来构建两帧图像之间的特征点对应关系。这种方法会有缺点&#xff1a; 关键点和描述子提取计算耗时&#xff0c;如果相机的频率高&#xff0c;则slam算法大部分耗时被占。特…

2种方法将集合数据List构建成树形结构

文章目录 递归循环构建树结构hutool.TreeUtil.build构建树结构 递归循环构建树结构 先查最外层树节点数据&#xff0c;再递归遍历每一层子节点数据 public ApiResultDto<List<LocationDto>> getTreeByParams(LocationSearchDto searchDto, SecurityUser user) {// …

代码随想录算法训练营第三十六天|860.柠檬水找零、406.根据身高重建队列、452. 用最少数量的箭引爆气球

860.柠檬水找零 文档讲解&#xff1a;代码随想录 题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 注意看提示&#xff1a; bills[i] 不是 5 就是 10 或是 20 场景较为固定 遇到了20&#xff0c;优先消耗10 class Solution:def lemonadeChange(self, bills: …

秋招突击——算法——模板题——区间DP——合并石子

文章目录 题目内容思路分析实现代码分析与总结 题目内容 思路分析 基本思路&#xff0c;先是遍历区间长度&#xff0c;然后再是遍历左端点&#xff0c;最后是遍历中间的划分点&#xff0c;将阶乘问题变成n三次方的问题 实现代码 // 组合数问题 #include <iostream> #in…

宝塔Linux下安装EMQX服务并设置匿名访问

简述 之前有在Windows和Linux下搭建过EMQX服务并且使用方面都没问题,但那都是使用的用户和密码方式访问,且前提都是通过浏览器进入EMQX的配置页面设置的属性; 但这次使用的是腾讯云租用的宝塔Liniux,由于没有浏览器只能通过命令行方式修改EMQX配置以达到目的;由于事先没看…

使用 CapSolver API 服务解决 Arkose Labs FunCaptcha 验证码

使用 CapSolver API 服务解决 Arkose Labs FunCaptcha 验证码 FunCaptcha 以其复杂的图像验证而闻名&#xff0c;对自动化系统构成了巨大的挑战。CapSolver 的 API 服务利用先进的 AI 技术轻松应对和解决 FunCaptcha 挑战。本指南探讨了 CapSolver 如何实现无缝自动化&#xff…

汇聚荣科技有限公司优点有哪些?

在当今快速发展的科技时代&#xff0c;企业之间的竞争愈发激烈。作为一家专注于科技创新与研发的公司&#xff0c;汇聚荣科技有限公司凭借其卓越的技术实力和创新能力&#xff0c;在业界树立了良好的口碑。那么&#xff0c;汇聚荣科技有限公司究竟有哪些优点呢?接下来&#xf…

XX数字中台技术栈及能力

XX数字中台技术栈及能力 1 概述 XX数字中台面向数据开发者、数据管理者和数据应用者&#xff0c;提供数据汇聚、融合、治理、开发、挖掘、共享、可视化、智能化等能力&#xff0c;实现数据端到端的全生命周期管理&#xff0c;以共筑数字基础底座&#xff0c;共享数据服务能力…

The Missing Semester of Your CS Education(计算机教育中缺失的一课)

Shell 工具和脚本(Shell Tools and Scripting) 一、shell脚本 1.1、变量赋值 在bash中为变量赋值的语法是foobar&#xff0c;访问变量中存储的数值&#xff0c;其语法为 $foo。 需要注意的是&#xff0c;foo bar &#xff08;使用空格隔开&#xff09;是不能正确工作的&…

llama-factory学习个人记录

框架、模型、数据集准备 1.llama-factory部署 # 克隆仓库 git clone https://github.com/hiyouga/LLaMA-Factory.git # 创建虚拟环境 conda create --name llama_factory python3.10 # 激活虚拟环境 conda activate llama_factory # 安装依赖 cd LLaMA-Factory pip install -…

Java 使用继承和重写父类方法写一个商品入库案例

package 练习.商品入库;import java.util.Scanner; // 抽象手机类 public abstract class Phone {//测试方法public static void main(String[] args){// 华为手机huawei h new huawei();h.setName("华为P40");h.setPrice(1999.99);h.setConfiguration("8128GB…

Go知识点复习

Go知识点复习 1.关于包的使用和GOPATH的配置 src:用于以代码包的形式组织并保存Go源码文件, 需要手动创建pkg目录&#xff1a;用于存放经由go install命令构建安装后的代码包&#xff08;包含Go库源码文件&#xff09;的“.a”归档文件bin目录&#xff1a;与pkg目录类似&…

kind: Telemetry

访问日志 访问日志提供了一种从单个工作负载实例的角度监控和理解行为的方法。 Istio 能够以一组可配置的格式为服务流量生成访问日志&#xff0c; 使操作员可以完全控制日志记录的方式、内容、时间和地点。 有关更多信息&#xff0c;请参阅获取 Envoy 的访问日志。 https:/…

ThingsBoard如何拆分前后端分离启动

后端启动 前端启动 注意事项 ThingsBoard是一个开源的物联网平台&#xff0c;它原本的设计就考虑到了现代Web应用的前后端分离架构。尽管其核心是一个后端服务&#xff0c;负责设备连接、数据处理和存储等&#xff0c;但其用户界面是作为单独的前端应用程序实现的&#xff0c…

Windows下部署Seata1.5.2,解决Seata无法启动问题

目录 1. 版本说明 2. Windows下部署Seata1.5.2 2.1 创建回滚日志表undo_log 2.2 创建Seata服务端需要的四张表 2.3 在nacos创建seata命名空间&#xff0c;添加seataServer.yml配置 2.4 修改本地D:/tool/seata-server-1.5.2/seata/conf/applicaltion.yml文件 2.5 启动Seat…