单片机外部晶振故障后自动切换内部晶振——以STM32为例

单片机外部晶振故障后自动切换内部晶振——以STM32为例

作者日期版本说明
Dog Tao2023.08.02V1.0发布初始版本

文章目录

  • 单片机外部晶振故障后自动切换内部晶振——以STM32为例
    • 背景
      • 外部晶振与内部振荡器
      • STM32F103时钟系统
      • STM32F407时钟系统
    • 代码实现
      • 系统时钟设置流程
      • 时钟源检测与切换
      • 使用内部振荡器
    • 总结

背景

时钟信号是单片机的心跳,对嵌入式系统的长期稳定运行有着至关重要的作用。现代单片机的时钟信号一般都支持外部时钟、外部晶体振荡器、内部RC振荡器等形式的输入。外部晶体振荡器(晶振)由于其高精度、高稳定性、低温飘、低成本的特性,广泛应用于各类对通讯、时间、性能要求严格的场合。

外部晶振与内部振荡器

  • 外部晶振:这种时钟源来自于微控制器外部的晶振或者振荡器。晶振是一种机械振动器件,利用压电效应或反压电效应产生精确的频率。外部晶振的主要优点是精度高,稳定性好。但是,他们可能需要额外的电路空间,并且可能更容易受到环境因素如温度和震动的影响。

  • 内部振荡器:这是一种集成在微控制器内部的时钟源。它通常是基于RC(电阻-电容)网络的振荡器。内部振荡器的优点是它们不需要额外的硬件,更便宜,更节省空间。但是,他们的频率精度和稳定性通常较低。

在实际应用中,选择哪种时钟源取决于具体的设计需求。对于需要高精度和稳定性的应用,通常会选择外部晶振。对于成本和空间更为重要的应用,内部振荡器可能是一个更好的选择。

STM32F103时钟系统

STM32F103的时钟系统相当复杂,主要有四种时钟源:高速内部(HSI)时钟,高速外部(HSE)时钟,低速内部(LSI)时钟,以及低速外部(LSE)时钟。

  • 高速内部(HSI)时钟:一个自校准的内部RC振荡器,提供8MHz的时钟。
  • 高速外部(HSE)时钟:可以连接到一个外部4-16 MHz的晶振或者用户提供的时钟源。
  • 低速内部(LSI)时钟:一个内部RC振荡器,提供40kHz的时钟,主要供独立看门狗和自动唤醒单元使用。
  • 低速外部(LSE)时钟:可以连接到一个外部32.768 kHz的晶振,主要用于RTC(实时时钟)和LCD。

如果使用外部晶振(HSE),STM32F103的最大系统时钟频率可以达到72 MHz。如果使用内部振荡器(HSI),STM32F103的最大系统时钟频率可以达到64 MHz。

STM32F407时钟系统

STM32F407的时钟系统与STM32F103的类似,也包括HSI,HSE,LSI和LSE四种时钟。但是其高速内部时钟频率达到了16MHz。

在STM32F407中,无论是16 MHz的HSI还是最高可以到24 MHz的HSE,都可以通过PLL倍频到168 MHz作为系统时钟频率。

STM32F103的时钟系统
在这里插入图片描述

代码实现

系统时钟设置流程

在STM32F103的标准库函数中,“system_stm32f10x.c”文件提供了多个不同频率的系统时钟设置方法,可以通过宏定义的方式条件编译指定时钟频率的设置函数,如下图所示:
在这里插入图片描述基于标准库函数的系统时钟设置调用路径依次为:

  1. 启动文件“startup_stm32f103x8.s”调用位于“system_stm32f10x.c”文件中的 SystemInit()函数。
  2. SystemInit()函数调用SetSysClock()函数。
  3. SetSysClock()函数根据上述宏定义调用不同的时钟设置函数,将系统时钟设置为指定频率。
  4. 使用全局变量SystemCoreClock可获取当前系统的时钟频率。
startup_stm32f103x8.s
SystemInit
SetSysClock
SetSysClockToHSE
SetSysClockTo36
SetSysClockTo72
Global variable: SystemCoreClock

时钟源检测与切换

在上述位于“system_stm32f10x.c”文件中系统时钟设置函数中已经内置了相关功能的模板,以SetSysClockTo72()函数为例:

/**
  * @brief  Sets System clock frequency to 72MHz and configure HCLK, PCLK2 
  *         and PCLK1 prescalers. 
  * @note   This function should be used only after reset.
  * @param  None
  * @retval None
  */
static void SetSysClockTo72(void)
{
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
  
  /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/    
  /* Enable HSE */    
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);
 
  /* Wait till HSE is ready and if Time out is reached exit */
  do
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;  
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    HSEStatus = (uint32_t)0x01;
  }
  else
  {
    HSEStatus = (uint32_t)0x00;
  }  

  if (HSEStatus == (uint32_t)0x01)
  {
    /* Enable Prefetch Buffer */
    FLASH->ACR |= FLASH_ACR_PRFTBE;

    /* Flash 2 wait state */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;    

 
    /* HCLK = SYSCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
      
    /* PCLK2 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
    
    /* PCLK1 = HCLK */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

#ifdef STM32F10X_CL
    /* Configure PLLs ------------------------------------------------------*/
    /* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */
    /* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */
        
    RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |
                              RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);
    RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |
                             RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);
  
    /* Enable PLL2 */
    RCC->CR |= RCC_CR_PLL2ON;
    /* Wait till PLL2 is ready */
    while((RCC->CR & RCC_CR_PLL2RDY) == 0)
    {
    }
    
   
    /* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */ 
    RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 | 
                            RCC_CFGR_PLLMULL9); 
#else    
    /*  PLL configuration: PLLCLK = HSE * 9 = 72 MHz */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
                                        RCC_CFGR_PLLMULL));
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);
#endif /* STM32F10X_CL */

    /* Enable PLL */
    RCC->CR |= RCC_CR_PLLON;

    /* Wait till PLL is ready */
    while((RCC->CR & RCC_CR_PLLRDY) == 0)
    {
    }
    
    /* Select PLL as system clock source */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    

    /* Wait till PLL is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
    {
    }
  }
  else
  { /* If HSE fails to start-up, the application will have wrong clock 
         configuration. User can add here some code to deal with this error */
  }
}

因此,只需要设计实现当外部晶振启动失败后的情况即可,函数框架如下:

static void SetSysClockTo72(void)
{
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
  
  /* 省略无关内容 */    

  if (HSEStatus == (uint32_t)0x01)
  {
    /* HSE启动成功 */
  }
  else
  { 
  	/* 自定内容:HSE启动失败,尝试启动内部振荡器,并更新系统时钟 */
  	SetSysClockTo48_HSI();
  	SystemCoreClockUpdate();
  }
}

使用内部振荡器

HSE启动失败,尝试启动内部振荡器,并更新系统时钟的自定义代码示例如下:

static void SetSysClockTo48_HSI()
{
   /* 开启HSI 即内部晶振时钟 */
	RCC->CR |= (uint32_t)0x00000001; 
 
	/*选择HSI为PLL的时钟源HSI必须2分频给PLL*/
	RCC->CFGR |= (uint32_t)RCC_CFGR_PLLSRC_HSI_Div2; 
 
	/*PLLCLK=8/2*12=48MHz   设置倍频得到时钟源PLL的频率*/
	RCC->CFGR |= (uint32_t)RCC_CFGR_PLLMULL12;
 
	/* PLL不分频输出  */
	RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
 
	/* 使能 PLL时钟 */
	RCC->CR |= RCC_CR_PLLON;
 
	/* 等待PLL时钟就绪*/
	while((RCC->CR & RCC_CR_PLLRDY) == 0)
	{
	}
 
	/* 选择PLL为系统时钟的时钟源 */
	RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
	RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    
 
	/* 等到PLL成为系统时钟的时钟源*/
	while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
	{
	}
}

使用内部振荡器设置系统时钟之后,需要调用预设的SystemCoreClockUpdate()完成时钟频率的更新(更新全局变量SystemCoreClock的值)。

/**
  * @brief  Update SystemCoreClock variable according to Clock Register Values.
  *         The SystemCoreClock variable contains the core clock (HCLK), it can
  *         be used by the user application to setup the SysTick timer or configure
  *         other parameters.
  *           
  * @note   Each time the core clock (HCLK) changes, this function must be called
  *         to update SystemCoreClock variable value. Otherwise, any configuration
  *         based on this variable will be incorrect.         
  *     
  * @note   - The system frequency computed by this function is not the real 
  *           frequency in the chip. It is calculated based on the predefined 
  *           constant and the selected clock source:
  *             
  *           - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
  *                                              
  *           - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
  *                          
  *           - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) 
  *             or HSI_VALUE(*) multiplied by the PLL factors.
  *         
  *         (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value
  *             8 MHz) but the real value may vary depending on the variations
  *             in voltage and temperature.   
  *    
  *         (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value
  *              8 MHz or 25 MHz, depedning on the product used), user has to ensure
  *              that HSE_VALUE is same as the real frequency of the crystal used.
  *              Otherwise, this function may have wrong result.
  *                
  *         - The result of this function could be not correct when using fractional
  *           value for HSE crystal.
  * @param  None
  * @retval None
  */
void SystemCoreClockUpdate (void)
{
  uint32_t tmp = 0, pllmull = 0, pllsource = 0;

#ifdef  STM32F10X_CL
  uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0;
#endif /* STM32F10X_CL */

#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
  uint32_t prediv1factor = 0;
#endif /* STM32F10X_LD_VL or STM32F10X_MD_VL or STM32F10X_HD_VL */
    
  /* Get SYSCLK source -------------------------------------------------------*/
  tmp = RCC->CFGR & RCC_CFGR_SWS;
  
  switch (tmp)
  {
    case 0x00:  /* HSI used as system clock */
      SystemCoreClock = HSI_VALUE;
      break;
    case 0x04:  /* HSE used as system clock */
      SystemCoreClock = HSE_VALUE;
      break;
    case 0x08:  /* PLL used as system clock */

      /* Get PLL clock source and multiplication factor ----------------------*/
      pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
      pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
      
#ifndef STM32F10X_CL      
      pllmull = ( pllmull >> 18) + 2;
      
      if (pllsource == 0x00)
      {
        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
        SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
      }
      else
      {
 #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
       prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
       /* HSE oscillator clock selected as PREDIV1 clock entry */
       SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; 
 #else
        /* HSE selected as PLL clock entry */
        if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET)
        {/* HSE oscillator clock divided by 2 */
          SystemCoreClock = (HSE_VALUE >> 1) * pllmull;
        }
        else
        {
          SystemCoreClock = HSE_VALUE * pllmull;
        }
 #endif
      }
#else
      pllmull = pllmull >> 18;
      
      if (pllmull != 0x0D)
      {
         pllmull += 2;
      }
      else
      { /* PLL multiplication factor = PLL input clock * 6.5 */
        pllmull = 13 / 2; 
      }
            
      if (pllsource == 0x00)
      {
        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
        SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
      }
      else
      {/* PREDIV1 selected as PLL clock entry */
        
        /* Get PREDIV1 clock source and division factor */
        prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC;
        prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
        
        if (prediv1source == 0)
        { 
          /* HSE oscillator clock selected as PREDIV1 clock entry */
          SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;          
        }
        else
        {/* PLL2 clock selected as PREDIV1 clock entry */
          
          /* Get PREDIV2 division factor and PLL2 multiplication factor */
          prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1;
          pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; 
          SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;                         
        }
      }
#endif /* STM32F10X_CL */ 
      break;

    default:
      SystemCoreClock = HSI_VALUE;
      break;
  }
  
  /* Compute HCLK clock frequency ----------------*/
  /* Get HCLK prescaler */
  tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
  /* HCLK clock frequency */
  SystemCoreClock >>= tmp;  
}

总结

本文所述的设计方法,能够在外部晶振故障后自动切换到内部晶振,提高系统的可靠性与稳定性。注意,上述示例只在单片机启动时进行时钟源检测,因此,如果是处理运行时的突发时钟故障,需要设计配套的看门狗,在系统陷入异常状态后自动重启系统。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/63681.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

郭盛华:npm 软件包窃取开发人员的敏感数据

网络安全研究人员在 npm 软件包注册表中发现了一系列新的恶意软件包,这些软件包旨在窃取敏感的开发人员信息。 所有模块的一个共同功能是能够启动 JavaScript(“index.js”),该 JavaScript 可以将有价值的信息泄露到远程服务器。…

HCIP 三层交换机

一、实现VLAN间通信 在传统的交换机组网中,默认所有网络都处于同一个广播域,带来了许多问题,VLAN技术的提出,满足了二层组网隔离广播域需求,使得属于不同的VLAN间网络无法通信,但不同VLAN之间又存在着互相…

HTML之表单标签

目录 表单标签 Form表单 定义: 基本语法结构: form属性: enctyoe属性 fieldeset标签 fieldeset属性 legend标签 label标签 优势 label属性 input标签 input属性 input标签中的type属性 text text输入框有以下配套属性 searc bu…

MySQL ROUND、FORMAT数值格式化,以及 返回版本、返回数据库等信息

FORMAT VS ROUND ROUND(数值&#xff0c;n) FORMAT(数值&#xff0c;n) 当 n < 0, FORMAT 整数部分&#xff0c;不会变化&#xff0c; ROUND&#xff0c;整数部分&#xff0c; 根据n的位数&#xff0c;把数值替换成0 当 n>0, 两个效果一样

【数据结构OJ题】移除元素

原题链接&#xff1a;https://leetcode.cn/problems/remove-element/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 方法一&#xff1a;暴力删除&#xff0c;挪动数据覆盖。即遍历整个nums[ ]数组&#xff0c;遇到值等于val的元素&#xff0c;就将整…

模块高可用性部署概述

高可用三种模式 Ⅰ. 主从热备Ⅱ. 哨兵模式Ⅲ. 集群模式Ⅳ. 番外 总结了Redis的几种高可用方式&#xff0c;对于做后端模块的同学来说&#xff0c;可以根据/或是借鉴其思路做自己的模块可用性部署。 Ⅰ. 主从热备 主从热备&#xff0c;是高可用性中最基础的解决方案&#xff0…

详解Quest 2积分与奖励规则

7月28日&#xff0c;在万众期待中&#xff0c;Mysten Labs在Quest门户网站上宣布了Quest 2的到来。经过严密的筹划&#xff0c;本着真实、公平以及用户至上的原则&#xff0c;现在向大家介绍Quest 2的积分规则以及奖励规则。 温馨提示&#xff1a;第一轮Bullshark Quest是一次精…

模拟实现消息队列项目(系列2) -- 项目前期的准备

目录 前言 1. 需求分析 1.1 核心概念 1.2 核心API 1.3 交换机类型 1.4 持久化 1.5 网络通信 1.6 消息应答 2. 模块划分 结语 前言 我们在上一个系列对于消息队列有了初步的认识,那我们明白了消息队列的用途之后,我们就开始进行我们的项目了,首先我们的项目是仿照Rabb…

【Spring Boot】(三)深入理解 Spring Boot 日志

文章目录 前言一、日志文件的作用二、Spring Boot 中的日志2.1 查看输出的日志信息2.2 日志格式二、Spring Boot 中的日志2.1 查看输出的日志信息2.2 日志格式 三、自定义日志输出3.1 日志框架3.2 日志对象的获取3.3 使用日志对象打印日志 四、日志级别4.1 日志级别的作用4.2 日…

springboot配置文件的使用

目录 1.application.properties是springboot默认的配置文件&#xff0c;但是比较繁琐&#xff0c;一般用.yml文件 2. 配置文件的作用 3.配置文件的使用 1.application.properties是springboot默认的配置文件&#xff0c;但是比较繁琐&#xff0c;一般用.yml文件 ①、properti…

我在leetcode用动态规划炒股

事情是这样的&#xff0c;突然兴起的我在letcode刷题 121. 买卖股票的最佳时机122. 买卖股票的最佳时机 II123. 买卖股票的最佳时机 III 以上三题。 1. 121. 买卖股票的最佳时机 1.1. 暴力遍历&#xff0c;两次遍历 1.1.1. 算法代码 public class Solution {public int Ma…

webpack基础知识八:说说如何借助webpack来优化前端性能?

一、背景 随着前端的项目逐渐扩大&#xff0c;必然会带来的一个问题就是性能 尤其在大型复杂的项目中&#xff0c;前端业务可能因为一个小小的数据依赖&#xff0c;导致整个页面卡顿甚至奔溃 一般项目在完成后&#xff0c;会通过webpack进行打包&#xff0c;利用webpack对前…

使用事件侦听器和 MATLAB GUI 查看 Simulink 信号研究

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Linux(三):Linux服务器下日常实操命令 (常年更新)

基础命令 cd命令&#xff1a;切换目录 cd &#xff1a;切换当前目录百至其它目录&#xff0c;比如进入/etc目录&#xff0c;则执行 cd /etccd / &#xff1a;在Linux 系统中斜杠“/”表示的是根目录。cd / ,即进入根目录.cd ~&#xff1a;进入用户在该系统的home目录&#…

Linux——设备树

目录 一、Linux 设备树的由来 二、Linux设备树的目的 1.平台识别 2.实时配置 3.设备植入 三、Linux 设备树的使用 1.基本数据格式 2.设备树实例解析 四、使用设备树的LED 驱动 五、习题 一、Linux 设备树的由来 在 Linux 内核源码的ARM 体系结构引入设备树之前&#x…

【CSS】圆形放大的hover效果

效果 index.html <!DOCTYPE html> <html><head><title> Document </title><link type"text/css" rel"styleSheet" href"index.css" /></head><body><div class"avatar"></…

机器学习常用Python库安装

机器学习常用Python库安装 作者日期版本说明Dog Tao2022.06.16V1.0开始建立文档 文章目录 机器学习常用Python库安装Anaconda简介使用镜像源配置 Pip简介镜像源配置 CUDAPytorch安装旧版本 TensorFlowGPU支持说明 DGL简介安装DGLLife RDKitscikit-multilearn Anaconda 简介 …

英语使用场景口语

HOTEL ENGLISH hotel motel inn b&b Process 1.booking a room can i reserve a room? reservation do you have and singles? double room standard room deluxe room presidential suite do you have a pick-up service? 2.checking in where is the recept…

MySQL的数据插入总结(不存在就插入,存在就更新)

MySQL的数据插入总结(不存在就插入&#xff0c;存在就更新) 1. on duplicate key update 当在insert语句后面带上ON DUPLICATE KEY UPDATE 子句&#xff0c;而要插入的行与表中现有记录的惟一索引或主键中产生重复值&#xff0c;那么就会发生旧行的更新&#xff1b;如果插入的…

AI 绘画Stable Diffusion 研究(五)sd文生图功能详解(下)

大家好&#xff0c;我是风雨无阻。 上一篇文章详细介绍了sd文生图的功能及使用注意事项&#xff0c;感兴趣的朋友可以前往查看&#xff1a;AI 绘画Stable Diffusion 研究&#xff08;四&#xff09;sd文生图功能详解&#xff08;上&#xff09; 。 那今天这篇文章&#xff0c;我…