Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

在这里插入图片描述

微调大模型可以像这样轻松…

Llama-factory

LLaMA-Factory 项目特色

  • 多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
  • 集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练和 ORPO 训练。
  • 多种精度:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
  • 先进算法:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 Agent 微调。
  • 实用技巧:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
  • 极速推理:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。

性能指标

与 ChatGLM 官方的 P-Tuning 微调相比,LLaMA Factory 的 LoRA 微调提供了 3.7 倍的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。

在这里插入图片描述

  • Training Speed: 训练阶段每秒处理的样本数量。(批处理大小=4,截断长度=1024)
  • Rouge Score: 广告文案生成任务验证集上的 Rouge-2 分数。(批处理大小=4,截断长度=1024)
  • GPU Memory: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1,截断长度=1024)
  • 在 ChatGLM 的 P-Tuning 中采用 pre_seq_len=128,在 LLaMA Factory 的 LoRA 微调中采用 lora_rank=32。

更新日志

[24/05/20] 官网支持了 PaliGemma 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 gemma 模板进行微调使其获得对话能力。

[24/05/18] 官网支持了 KTO 偏好对齐算法。详细用法请参照 examples。

在这里插入图片描述
在这里插入图片描述

https://arxiv.org/pdf/2402.01306
[24/05/14] 官网支持了昇腾 NPU 设备的训练和推理。

模型

在这里插入图片描述
在这里插入图片描述

默认模块应作为 --lora_target 参数的默认值,可使用 --lora_target all 参数指定全部模块以取得更好的效果。

对于所有“基座”(Base)模型,–template 参数可以是 default, alpaca, vicuna 等任意值。但“对话”(Instruct/Chat)模型请务必使用对应的模板。

项目所支持模型的完整列表:

from collections import OrderedDict, defaultdict
from enum import Enum
from typing import Dict, Optional


CHOICES = ["A", "B", "C", "D"]

DATA_CONFIG = "dataset_info.json"

DEFAULT_MODULE = defaultdict(str)

DEFAULT_TEMPLATE = defaultdict(str)

FILEEXT2TYPE = {
    "arrow": "arrow",
    "csv": "csv",
    "json": "json",
    "jsonl": "json",
    "parquet": "parquet",
    "txt": "text",
}

IGNORE_INDEX = -100

IMAGE_TOKEN = "<image>"

LAYERNORM_NAMES = {"norm", "ln"}

METHODS = ["full", "freeze", "lora"]

MOD_SUPPORTED_MODELS = ["bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"]

PEFT_METHODS = ["lora"]

RUNNING_LOG = "running_log.txt"

SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]

SUPPORTED_MODELS = OrderedDict()

TRAINER_CONFIG = "trainer_config.yaml"

TRAINER_LOG = "trainer_log.jsonl"

TRAINING_STAGES = {
    "Supervised Fine-Tuning": "sft",
    "Reward Modeling": "rm",
    "PPO": "ppo",
    "DPO": "dpo",
    "KTO": "kto",
    "ORPO": "orpo",
    "Pre-Training": "pt",
}

STAGES_USE_PAIR_DATA = ["rm", "dpo", "orpo"]

SUPPORTED_CLASS_FOR_S2ATTN = ["llama"]

V_HEAD_WEIGHTS_NAME = "value_head.bin"

V_HEAD_SAFE_WEIGHTS_NAME = "value_head.safetensors"

VISION_MODELS = set()


class DownloadSource(str, Enum):
    DEFAULT = "hf"
    MODELSCOPE = "ms"


def register_model_group(
    models: Dict[str, Dict[DownloadSource, str]],
    module: Optional[str] = None,
    template: Optional[str] = None,
    vision: bool = False,
) -> None:
    prefix = None
    for name, path in models.items():
        if prefix is None:
            prefix = name.split("-")[0]
        else:
            assert prefix == name.split("-")[0], "prefix should be identical."
        SUPPORTED_MODELS[name] = path
    if module is not None:
        DEFAULT_MODULE[prefix] = module
    if template is not None:
        DEFAULT_TEMPLATE[prefix] = template
    if vision:
        VISION_MODELS.add(prefix)


register_model_group(
    models={
        "Baichuan-7B-Base": {
            DownloadSource.DEFAULT: "baichuan-inc/Baichuan-7B",
            DownloadSource.MODELSCOPE: "baichuan-inc/baichuan-7B",
        },
        "Baichuan-13B-Base": {
            DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Base",
            DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Base",
        },
        "Baichuan-13B-Chat": {
            DownloadSource.DEFAULT: "baichuan-inc/Baichuan-13B-Chat",
            DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan-13B-Chat",
        },
    },
    module="W_pack",
    template="baichuan",
)


register_model_group(
    models={
        "Baichuan2-7B-Base": {
            DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Base",
            DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Base",
        },
        "Baichuan2-13B-Base": {
            DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Base",
            DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Base",
        },
        "Baichuan2-7B-Chat": {
            DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-7B-Chat",
            DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-7B-Chat",
        },
        "Baichuan2-13B-Chat": {
            DownloadSource.DEFAULT: "baichuan-inc/Baichuan2-13B-Chat",
            DownloadSource.MODELSCOPE: "baichuan-inc/Baichuan2-13B-Chat",
        },
    },
    module="W_pack",
    template="baichuan2",
)


register_model_group(
    models={
        "BLOOM-560M": {
            DownloadSource.DEFAULT: "bigscience/bloom-560m",
            DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-560m",
        },
        "BLOOM-3B": {
            DownloadSource.DEFAULT: "bigscience/bloom-3b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-3b",
        },
        "BLOOM-7B1": {
            DownloadSource.DEFAULT: "bigscience/bloom-7b1",
            DownloadSource.MODELSCOPE: "AI-ModelScope/bloom-7b1",
        },
    },
    module="query_key_value",
)


register_model_group(
    models={
        "BLOOMZ-560M": {
            DownloadSource.DEFAULT: "bigscience/bloomz-560m",
            DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-560m",
        },
        "BLOOMZ-3B": {
            DownloadSource.DEFAULT: "bigscience/bloomz-3b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-3b",
        },
        "BLOOMZ-7B1-mt": {
            DownloadSource.DEFAULT: "bigscience/bloomz-7b1-mt",
            DownloadSource.MODELSCOPE: "AI-ModelScope/bloomz-7b1-mt",
        },
    },
    module="query_key_value",
)


register_model_group(
    models={
        "BlueLM-7B-Base": {
            DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Base",
            DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Base",
        },
        "BlueLM-7B-Chat": {
            DownloadSource.DEFAULT: "vivo-ai/BlueLM-7B-Chat",
            DownloadSource.MODELSCOPE: "vivo-ai/BlueLM-7B-Chat",
        },
    },
    template="bluelm",
)


register_model_group(
    models={
        "Breeze-7B": {
            DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Base-v1_0",
        },
        "Breeze-7B-Chat": {
            DownloadSource.DEFAULT: "MediaTek-Research/Breeze-7B-Instruct-v1_0",
        },
    },
    template="breeze",
)


register_model_group(
    models={
        "ChatGLM2-6B-Chat": {
            DownloadSource.DEFAULT: "THUDM/chatglm2-6b",
            DownloadSource.MODELSCOPE: "ZhipuAI/chatglm2-6b",
        }
    },
    module="query_key_value",
    template="chatglm2",
)


register_model_group(
    models={
        "ChatGLM3-6B-Base": {
            DownloadSource.DEFAULT: "THUDM/chatglm3-6b-base",
            DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b-base",
        },
        "ChatGLM3-6B-Chat": {
            DownloadSource.DEFAULT: "THUDM/chatglm3-6b",
            DownloadSource.MODELSCOPE: "ZhipuAI/chatglm3-6b",
        },
    },
    module="query_key_value",
    template="chatglm3",
)


register_model_group(
    models={
        "ChineseLLaMA2-1.3B": {
            DownloadSource.DEFAULT: "hfl/chinese-llama-2-1.3b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-1.3b",
        },
        "ChineseLLaMA2-7B": {
            DownloadSource.DEFAULT: "hfl/chinese-llama-2-7b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-7b",
        },
        "ChineseLLaMA2-13B": {
            DownloadSource.DEFAULT: "hfl/chinese-llama-2-13b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-llama-2-13b",
        },
        "ChineseLLaMA2-1.3B-Chat": {
            DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-1.3b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-1.3b",
        },
        "ChineseLLaMA2-7B-Chat": {
            DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-7b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-7b",
        },
        "ChineseLLaMA2-13B-Chat": {
            DownloadSource.DEFAULT: "hfl/chinese-alpaca-2-13b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/chinese-alpaca-2-13b",
        },
    },
    template="llama2_zh",
)


register_model_group(
    models={
        "CommandR-35B-Chat": {
            DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01",
            DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-v01",
        },
        "CommandR-Plus-104B-Chat": {
            DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus",
            DownloadSource.MODELSCOPE: "AI-ModelScope/c4ai-command-r-plus",
        },
        "CommandR-35B-4bit-Chat": {
            DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-v01-4bit",
            DownloadSource.MODELSCOPE: "mirror013/c4ai-command-r-v01-4bit",
        },
        "CommandR-Plus-104B-4bit-Chat": {
            DownloadSource.DEFAULT: "CohereForAI/c4ai-command-r-plus-4bit",
        },
    },
    template="cohere",
)


register_model_group(
    models={
        "DBRX-132B-Base": {
            DownloadSource.DEFAULT: "databricks/dbrx-base",
            DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-base",
        },
        "DBRX-132B-Chat": {
            DownloadSource.DEFAULT: "databricks/dbrx-instruct",
            DownloadSource.MODELSCOPE: "AI-ModelScope/dbrx-instruct",
        },
    },
    module="Wqkv",
    template="dbrx",
)


register_model_group(
    models={
        "DeepSeek-LLM-7B-Base": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-base",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-base",
        },
        "DeepSeek-LLM-67B-Base": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-base",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-base",
        },
        "DeepSeek-LLM-7B-Chat": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-7b-chat",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-7b-chat",
        },
        "DeepSeek-LLM-67B-Chat": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-llm-67b-chat",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-llm-67b-chat",
        },
        "DeepSeek-Math-7B-Base": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-base",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-base",
        },
        "DeepSeek-Math-7B-Chat": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-math-7b-instruct",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-math-7b-instruct",
        },
        "DeepSeek-MoE-16B-Base": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-base",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-base",
        },
        "DeepSeek-MoE-16B-v2-Base": {
            DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Lite",
        },
        "DeepSeek-MoE-236B-Base": {
            DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2",
            DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2",
        },
        "DeepSeek-MoE-16B-Chat": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-moe-16b-chat",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-moe-16b-chat",
        },
        "DeepSeek-MoE-16B-v2-Chat": {
            DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Lite-Chat",
        },
        "DeepSeek-MoE-236B-Chat": {
            DownloadSource.DEFAULT: "deepseek-ai/DeepSeek-V2-Chat",
            DownloadSource.MODELSCOPE: "deepseek-ai/DeepSeek-V2-Chat",
        },
    },
    template="deepseek",
)


register_model_group(
    models={
        "DeepSeekCoder-6.7B-Base": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-base",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-base",
        },
        "DeepSeekCoder-7B-Base": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-base-v1.5",
        },
        "DeepSeekCoder-33B-Base": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-base",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-base",
        },
        "DeepSeekCoder-6.7B-Chat": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-6.7b-instruct",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-6.7b-instruct",
        },
        "DeepSeekCoder-7B-Chat": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
        },
        "DeepSeekCoder-33B-Chat": {
            DownloadSource.DEFAULT: "deepseek-ai/deepseek-coder-33b-instruct",
            DownloadSource.MODELSCOPE: "deepseek-ai/deepseek-coder-33b-instruct",
        },
    },
    template="deepseekcoder",
)


register_model_group(
    models={
        "Falcon-7B": {
            DownloadSource.DEFAULT: "tiiuae/falcon-7b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b",
        },
        "Falcon-11B": {
            DownloadSource.DEFAULT: "tiiuae/falcon-11B",
        },
        "Falcon-40B": {
            DownloadSource.DEFAULT: "tiiuae/falcon-40b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b",
        },
        "Falcon-180B": {
            DownloadSource.DEFAULT: "tiiuae/falcon-180b",
            DownloadSource.MODELSCOPE: "modelscope/falcon-180B",
        },
        "Falcon-7B-Chat": {
            DownloadSource.DEFAULT: "tiiuae/falcon-7b-instruct",
            DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-7b-instruct",
        },
        "Falcon-40B-Chat": {
            DownloadSource.DEFAULT: "tiiuae/falcon-40b-instruct",
            DownloadSource.MODELSCOPE: "AI-ModelScope/falcon-40b-instruct",
        },
        "Falcon-180B-Chat": {
            DownloadSource.DEFAULT: "tiiuae/falcon-180b-chat",
            DownloadSource.MODELSCOPE: "modelscope/falcon-180B-chat",
        },
    },
    module="query_key_value",
    template="falcon",
)


register_model_group(
    models={
        "Gemma-2B": {
            DownloadSource.DEFAULT: "google/gemma-2b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-2b",
        },
        "Gemma-7B": {
            DownloadSource.DEFAULT: "google/gemma-7b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-2b-it",
        },
        "Gemma-2B-Chat": {
            DownloadSource.DEFAULT: "google/gemma-2b-it",
            DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b",
        },
        "Gemma-7B-Chat": {
            DownloadSource.DEFAULT: "google/gemma-7b-it",
            DownloadSource.MODELSCOPE: "AI-ModelScope/gemma-7b-it",
        },
    },
    template="gemma",
)


register_model_group(
    models={
        "CodeGemma-2B": {
            DownloadSource.DEFAULT: "google/codegemma-1.1-2b",
        },
        "CodeGemma-7B": {
            DownloadSource.DEFAULT: "google/codegemma-7b",
        },
        "CodeGemma-7B-Chat": {
            DownloadSource.DEFAULT: "google/codegemma-1.1-7b-it",
            DownloadSource.MODELSCOPE: "AI-ModelScope/codegemma-7b-it",
        },
    },
    template="gemma",
)


register_model_group(
    models={
        "InternLM-7B": {
            DownloadSource.DEFAULT: "internlm/internlm-7b",
            DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-7b",
        },
        "InternLM-20B": {
            DownloadSource.DEFAULT: "internlm/internlm-20b",
            DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-20b",
        },
        "InternLM-7B-Chat": {
            DownloadSource.DEFAULT: "internlm/internlm-chat-7b",
            DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-7b",
        },
        "InternLM-20B-Chat": {
            DownloadSource.DEFAULT: "internlm/internlm-chat-20b",
            DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm-chat-20b",
        },
    },
    template="intern",
)


register_model_group(
    models={
        "InternLM2-7B": {
            DownloadSource.DEFAULT: "internlm/internlm2-7b",
            DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-7b",
        },
        "InternLM2-20B": {
            DownloadSource.DEFAULT: "internlm/internlm2-20b",
            DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-20b",
        },
        "InternLM2-7B-Chat": {
            DownloadSource.DEFAULT: "internlm/internlm2-chat-7b",
            DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-7b",
        },
        "InternLM2-20B-Chat": {
            DownloadSource.DEFAULT: "internlm/internlm2-chat-20b",
            DownloadSource.MODELSCOPE: "Shanghai_AI_Laboratory/internlm2-chat-20b",
        },
    },
    module="wqkv",
    template="intern2",
)


register_model_group(
    models={
        "Jambda-v0.1": {
            DownloadSource.DEFAULT: "ai21labs/Jamba-v0.1",
            DownloadSource.MODELSCOPE: "AI-ModelScope/Jamba-v0.1",
        }
    },
)


register_model_group(
    models={
        "LingoWhale-8B": {
            DownloadSource.DEFAULT: "deeplang-ai/LingoWhale-8B",
            DownloadSource.MODELSCOPE: "DeepLang/LingoWhale-8B",
        }
    },
    module="qkv_proj",
)


register_model_group(
    models={
        "LLaMA-7B": {
            DownloadSource.DEFAULT: "huggyllama/llama-7b",
            DownloadSource.MODELSCOPE: "skyline2006/llama-7b",
        },
        "LLaMA-13B": {
            DownloadSource.DEFAULT: "huggyllama/llama-13b",
            DownloadSource.MODELSCOPE: "skyline2006/llama-13b",
        },
        "LLaMA-30B": {
            DownloadSource.DEFAULT: "huggyllama/llama-30b",
            DownloadSource.MODELSCOPE: "skyline2006/llama-30b",
        },
        "LLaMA-65B": {
            DownloadSource.DEFAULT: "huggyllama/llama-65b",
            DownloadSource.MODELSCOPE: "skyline2006/llama-65b",
        },
    }
)


register_model_group(
    models={
        "LLaMA2-7B": {
            DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-hf",
            DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-ms",
        },
        "LLaMA2-13B": {
            DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-hf",
            DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-ms",
        },
        "LLaMA2-70B": {
            DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-hf",
            DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-ms",
        },
        "LLaMA2-7B-Chat": {
            DownloadSource.DEFAULT: "meta-llama/Llama-2-7b-chat-hf",
            DownloadSource.MODELSCOPE: "modelscope/Llama-2-7b-chat-ms",
        },
        "LLaMA2-13B-Chat": {
            DownloadSource.DEFAULT: "meta-llama/Llama-2-13b-chat-hf",
            DownloadSource.MODELSCOPE: "modelscope/Llama-2-13b-chat-ms",
        },
        "LLaMA2-70B-Chat": {
            DownloadSource.DEFAULT: "meta-llama/Llama-2-70b-chat-hf",
            DownloadSource.MODELSCOPE: "modelscope/Llama-2-70b-chat-ms",
        },
    },
    template="llama2",
)


register_model_group(
    models={
        "LLaMA3-8B": {
            DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B",
            DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B",
        },
        "LLaMA3-70B": {
            DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B",
            DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B",
        },
        "LLaMA3-8B-Chat": {
            DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-8B-Instruct",
            DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-8B-Instruct",
        },
        "LLaMA3-70B-Chat": {
            DownloadSource.DEFAULT: "meta-llama/Meta-Llama-3-70B-Instruct",
            DownloadSource.MODELSCOPE: "LLM-Research/Meta-Llama-3-70B-Instruct",
        },
        "LLaMA3-8B-Chinese-Chat": {
            DownloadSource.DEFAULT: "shenzhi-wang/Llama3-8B-Chinese-Chat",
            DownloadSource.MODELSCOPE: "LLM-Research/Llama3-8B-Chinese-Chat",
        },
        "LLaMA3-70B-Chinese-Chat": {
            DownloadSource.DEFAULT: "shenzhi-wang/Llama3-70B-Chinese-Chat",
        },
    },
    template="llama3",
)


register_model_group(
    models={
        "LLaVA1.5-7B-Chat": {
            DownloadSource.DEFAULT: "llava-hf/llava-1.5-7b-hf",
        },
        "LLaVA1.5-13B-Chat": {
            DownloadSource.DEFAULT: "llava-hf/llava-1.5-13b-hf",
        },
    },
    template="vicuna",
    vision=True,
)


register_model_group(
    models={
        "Mistral-7B-v0.1": {
            DownloadSource.DEFAULT: "mistralai/Mistral-7B-v0.1",
            DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.1",
        },
        "Mistral-7B-v0.1-Chat": {
            DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1",
            DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1",
        },
        "Mistral-7B-v0.2": {
            DownloadSource.DEFAULT: "alpindale/Mistral-7B-v0.2-hf",
            DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-v0.2-hf",
        },
        "Mistral-7B-v0.2-Chat": {
            DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.2",
            DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.2",
        },
    },
    template="mistral",
)


register_model_group(
    models={
        "Mixtral-8x7B-v0.1": {
            DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-v0.1",
            DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-v0.1",
        },
        "Mixtral-8x7B-v0.1-Chat": {
            DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-Instruct-v0.1",
            DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x7B-Instruct-v0.1",
        },
        "Mixtral-8x22B-v0.1": {
            DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-v0.1",
            DownloadSource.MODELSCOPE: "AI-ModelScope/Mixtral-8x22B-v0.1",
        },
        "Mixtral-8x22B-v0.1-Chat": {
            DownloadSource.DEFAULT: "mistralai/Mixtral-8x22B-Instruct-v0.1",
        },
    },
    template="mistral",
)


register_model_group(
    models={
        "OLMo-1B": {
            DownloadSource.DEFAULT: "allenai/OLMo-1B-hf",
        },
        "OLMo-7B": {
            DownloadSource.DEFAULT: "allenai/OLMo-7B-hf",
        },
        "OLMo-1.7-7B": {
            DownloadSource.DEFAULT: "allenai/OLMo-1.7-7B-hf",
        },
    },
)


register_model_group(
    models={
        "OpenChat3.5-7B-Chat": {
            DownloadSource.DEFAULT: "openchat/openchat-3.5-0106",
            DownloadSource.MODELSCOPE: "xcwzxcwz/openchat-3.5-0106",
        }
    },
    template="openchat",
)


register_model_group(
    models={
        "Orion-14B-Base": {
            DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Base",
            DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Base",
        },
        "Orion-14B-Chat": {
            DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat",
            DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat",
        },
        "Orion-14B-Long-Chat": {
            DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-LongChat",
            DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-LongChat",
        },
        "Orion-14B-RAG-Chat": {
            DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat-RAG",
            DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat-RAG",
        },
        "Orion-14B-Plugin-Chat": {
            DownloadSource.DEFAULT: "OrionStarAI/Orion-14B-Chat-Plugin",
            DownloadSource.MODELSCOPE: "OrionStarAI/Orion-14B-Chat-Plugin",
        },
    },
    template="orion",
)


register_model_group(
    models={
        "PaliGemma-3B-pt-224": {
            DownloadSource.DEFAULT: "google/paligemma-3b-pt-224",
        },
        "PaliGemma-3B-pt-448": {
            DownloadSource.DEFAULT: "google/paligemma-3b-pt-448",
        },
        "PaliGemma-3B-pt-896": {
            DownloadSource.DEFAULT: "google/paligemma-3b-pt-896",
        },
        "PaliGemma-3B-mix-224": {
            DownloadSource.DEFAULT: "google/paligemma-3b-mix-224",
        },
        "PaliGemma-3B-mix-448": {
            DownloadSource.DEFAULT: "google/paligemma-3b-mix-448",
        },
    },
    vision=True,
)


register_model_group(
    models={
        "Phi-1.5-1.3B": {
            DownloadSource.DEFAULT: "microsoft/phi-1_5",
            DownloadSource.MODELSCOPE: "allspace/PHI_1-5",
        },
        "Phi-2-2.7B": {
            DownloadSource.DEFAULT: "microsoft/phi-2",
            DownloadSource.MODELSCOPE: "AI-ModelScope/phi-2",
        },
    }
)


register_model_group(
    models={
        "Phi3-3.8B-4k-Chat": {
            DownloadSource.DEFAULT: "microsoft/Phi-3-mini-4k-instruct",
            DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-4k-instruct",
        },
        "Phi3-3.8B-128k-Chat": {
            DownloadSource.DEFAULT: "microsoft/Phi-3-mini-128k-instruct",
            DownloadSource.MODELSCOPE: "LLM-Research/Phi-3-mini-128k-instruct",
        },
    },
    module="qkv_proj",
    template="phi",
)


register_model_group(
    models={
        "Qwen-1.8B": {
            DownloadSource.DEFAULT: "Qwen/Qwen-1_8B",
            DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B",
        },
        "Qwen-7B": {
            DownloadSource.DEFAULT: "Qwen/Qwen-7B",
            DownloadSource.MODELSCOPE: "qwen/Qwen-7B",
        },
        "Qwen-14B": {
            DownloadSource.DEFAULT: "Qwen/Qwen-14B",
            DownloadSource.MODELSCOPE: "qwen/Qwen-14B",
        },
        "Qwen-72B": {
            DownloadSource.DEFAULT: "Qwen/Qwen-72B",
            DownloadSource.MODELSCOPE: "qwen/Qwen-72B",
        },
        "Qwen-1.8B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat",
        },
        "Qwen-7B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat",
        },
        "Qwen-14B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat",
        },
        "Qwen-72B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat",
        },
        "Qwen-1.8B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int8",
        },
        "Qwen-1.8B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-1_8B-Chat-Int4",
            DownloadSource.MODELSCOPE: "qwen/Qwen-1_8B-Chat-Int4",
        },
        "Qwen-7B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int8",
        },
        "Qwen-7B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-7B-Chat-Int4",
            DownloadSource.MODELSCOPE: "qwen/Qwen-7B-Chat-Int4",
        },
        "Qwen-14B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int8",
        },
        "Qwen-14B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-14B-Chat-Int4",
            DownloadSource.MODELSCOPE: "qwen/Qwen-14B-Chat-Int4",
        },
        "Qwen-72B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int8",
        },
        "Qwen-72B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen-72B-Chat-Int4",
            DownloadSource.MODELSCOPE: "qwen/Qwen-72B-Chat-Int4",
        },
    },
    module="c_attn",
    template="qwen",
)


register_model_group(
    models={
        "Qwen1.5-0.5B": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B",
        },
        "Qwen1.5-1.8B": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B",
        },
        "Qwen1.5-4B": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B",
        },
        "Qwen1.5-7B": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B",
        },
        "Qwen1.5-14B": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B",
        },
        "Qwen1.5-32B": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B",
        },
        "Qwen1.5-72B": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B",
        },
        "Qwen1.5-110B": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B",
        },
        "Qwen1.5-MoE-A2.7B": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B",
        },
        "Qwen1.5-Code-7B": {
            DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B",
            DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B",
        },
        "Qwen1.5-0.5B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat",
        },
        "Qwen1.5-1.8B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat",
        },
        "Qwen1.5-4B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat",
        },
        "Qwen1.5-7B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat",
        },
        "Qwen1.5-14B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat",
        },
        "Qwen1.5-32B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat",
        },
        "Qwen1.5-72B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat",
        },
        "Qwen1.5-110B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat",
        },
        "Qwen1.5-MoE-A2.7B-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat",
        },
        "Qwen1.5-Code-7B-Chat": {
            DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat",
            DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat",
        },
        "Qwen1.5-0.5B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-GPTQ-Int8",
        },
        "Qwen1.5-0.5B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-0.5B-Chat-AWQ",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-0.5B-Chat-AWQ",
        },
        "Qwen1.5-1.8B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-GPTQ-Int8",
        },
        "Qwen1.5-1.8B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-1.8B-Chat-AWQ",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-1.8B-Chat-AWQ",
        },
        "Qwen1.5-4B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-GPTQ-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-GPTQ-Int8",
        },
        "Qwen1.5-4B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-4B-Chat-AWQ",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-4B-Chat-AWQ",
        },
        "Qwen1.5-7B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-GPTQ-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-GPTQ-Int8",
        },
        "Qwen1.5-7B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-7B-Chat-AWQ",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-7B-Chat-AWQ",
        },
        "Qwen1.5-14B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-GPTQ-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-GPTQ-Int8",
        },
        "Qwen1.5-14B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-14B-Chat-AWQ",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-14B-Chat-AWQ",
        },
        "Qwen1.5-32B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-32B-Chat-AWQ",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-32B-Chat-AWQ",
        },
        "Qwen1.5-72B-int8-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-GPTQ-Int8",
        },
        "Qwen1.5-72B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-72B-Chat-AWQ",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-72B-Chat-AWQ",
        },
        "Qwen1.5-110B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-110B-Chat-AWQ",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-110B-Chat-AWQ",
        },
        "Qwen1.5-MoE-A2.7B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
            DownloadSource.MODELSCOPE: "qwen/Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4",
        },
        "Qwen1.5-Code-7B-int4-Chat": {
            DownloadSource.DEFAULT: "Qwen/CodeQwen1.5-7B-Chat-AWQ",
            DownloadSource.MODELSCOPE: "qwen/CodeQwen1.5-7B-Chat-AWQ",
        },
    },
    template="qwen",
)


register_model_group(
    models={
        "SOLAR-10.7B": {
            DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-v1.0",
        },
        "SOLAR-10.7B-Chat": {
            DownloadSource.DEFAULT: "upstage/SOLAR-10.7B-Instruct-v1.0",
            DownloadSource.MODELSCOPE: "AI-ModelScope/SOLAR-10.7B-Instruct-v1.0",
        },
    },
    template="solar",
)


register_model_group(
    models={
        "Skywork-13B-Base": {
            DownloadSource.DEFAULT: "Skywork/Skywork-13B-base",
            DownloadSource.MODELSCOPE: "skywork/Skywork-13B-base",
        }
    }
)


register_model_group(
    models={
        "StarCoder2-3B": {
            DownloadSource.DEFAULT: "bigcode/starcoder2-3b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-3b",
        },
        "StarCoder2-7B": {
            DownloadSource.DEFAULT: "bigcode/starcoder2-7b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-7b",
        },
        "StarCoder2-15B": {
            DownloadSource.DEFAULT: "bigcode/starcoder2-15b",
            DownloadSource.MODELSCOPE: "AI-ModelScope/starcoder2-15b",
        },
    }
)


register_model_group(
    models={
        "Vicuna1.5-7B-Chat": {
            DownloadSource.DEFAULT: "lmsys/vicuna-7b-v1.5",
            DownloadSource.MODELSCOPE: "Xorbits/vicuna-7b-v1.5",
        },
        "Vicuna1.5-13B-Chat": {
            DownloadSource.DEFAULT: "lmsys/vicuna-13b-v1.5",
            DownloadSource.MODELSCOPE: "Xorbits/vicuna-13b-v1.5",
        },
    },
    template="vicuna",
)


register_model_group(
    models={
        "XuanYuan-6B": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B",
        },
        "XuanYuan-70B": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B",
        },
        "XuanYuan-2-70B": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B",
        },
        "XuanYuan-6B-Chat": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat",
        },
        "XuanYuan-70B-Chat": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat",
        },
        "XuanYuan-2-70B-Chat": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat",
        },
        "XuanYuan-6B-int8-Chat": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-8bit",
        },
        "XuanYuan-6B-int4-Chat": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-6B-Chat-4bit",
        },
        "XuanYuan-70B-int8-Chat": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-8bit",
        },
        "XuanYuan-70B-int4-Chat": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan-70B-Chat-4bit",
        },
        "XuanYuan-2-70B-int8-Chat": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-8bit",
        },
        "XuanYuan-2-70B-int4-Chat": {
            DownloadSource.DEFAULT: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
            DownloadSource.MODELSCOPE: "Duxiaoman-DI/XuanYuan2-70B-Chat-4bit",
        },
    },
    template="xuanyuan",
)


register_model_group(
    models={
        "XVERSE-7B": {
            DownloadSource.DEFAULT: "xverse/XVERSE-7B",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-7B",
        },
        "XVERSE-13B": {
            DownloadSource.DEFAULT: "xverse/XVERSE-13B",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-13B",
        },
        "XVERSE-65B": {
            DownloadSource.DEFAULT: "xverse/XVERSE-65B",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-65B",
        },
        "XVERSE-65B-2": {
            DownloadSource.DEFAULT: "xverse/XVERSE-65B-2",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-2",
        },
        "XVERSE-7B-Chat": {
            DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat",
        },
        "XVERSE-13B-Chat": {
            DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat",
        },
        "XVERSE-65B-Chat": {
            DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat",
        },
        "XVERSE-MoE-A4.2B": {
            DownloadSource.DEFAULT: "xverse/XVERSE-MoE-A4.2B",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-MoE-A4.2B",
        },
        "XVERSE-7B-int8-Chat": {
            DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int8",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int8",
        },
        "XVERSE-7B-int4-Chat": {
            DownloadSource.DEFAULT: "xverse/XVERSE-7B-Chat-GPTQ-Int4",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-7B-Chat-GPTQ-Int4",
        },
        "XVERSE-13B-int8-Chat": {
            DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int8",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int8",
        },
        "XVERSE-13B-int4-Chat": {
            DownloadSource.DEFAULT: "xverse/XVERSE-13B-Chat-GPTQ-Int4",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-13B-Chat-GPTQ-Int4",
        },
        "XVERSE-65B-int4-Chat": {
            DownloadSource.DEFAULT: "xverse/XVERSE-65B-Chat-GPTQ-Int4",
            DownloadSource.MODELSCOPE: "xverse/XVERSE-65B-Chat-GPTQ-Int4",
        },
    },
    template="xverse",
)


register_model_group(
    models={
        "Yayi-7B": {
            DownloadSource.DEFAULT: "wenge-research/yayi-7b-llama2",
            DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-7b-llama2",
        },
        "Yayi-13B": {
            DownloadSource.DEFAULT: "wenge-research/yayi-13b-llama2",
            DownloadSource.MODELSCOPE: "AI-ModelScope/yayi-13b-llama2",
        },
    },
    template="yayi",
)


register_model_group(
    models={
        "Yi-6B": {
            DownloadSource.DEFAULT: "01-ai/Yi-6B",
            DownloadSource.MODELSCOPE: "01ai/Yi-6B",
        },
        "Yi-9B": {
            DownloadSource.DEFAULT: "01-ai/Yi-9B",
            DownloadSource.MODELSCOPE: "01ai/Yi-9B",
        },
        "Yi-34B": {
            DownloadSource.DEFAULT: "01-ai/Yi-34B",
            DownloadSource.MODELSCOPE: "01ai/Yi-34B",
        },
        "Yi-6B-Chat": {
            DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat",
            DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat",
        },
        "Yi-34B-Chat": {
            DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat",
            DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat",
        },
        "Yi-6B-int8-Chat": {
            DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-8bits",
            DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-8bits",
        },
        "Yi-6B-int4-Chat": {
            DownloadSource.DEFAULT: "01-ai/Yi-6B-Chat-4bits",
            DownloadSource.MODELSCOPE: "01ai/Yi-6B-Chat-4bits",
        },
        "Yi-34B-int8-Chat": {
            DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-8bits",
            DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-8bits",
        },
        "Yi-34B-int4-Chat": {
            DownloadSource.DEFAULT: "01-ai/Yi-34B-Chat-4bits",
            DownloadSource.MODELSCOPE: "01ai/Yi-34B-Chat-4bits",
        },
        "Yi-1.5-6B": {
            DownloadSource.DEFAULT: "01-ai/Yi-1.5-6B",
            DownloadSource.MODELSCOPE: "01ai/Yi-1.5-6B",
        },
        "Yi-1.5-9B": {
            DownloadSource.DEFAULT: "01-ai/Yi-1.5-9B",
            DownloadSource.MODELSCOPE: "01ai/Yi-1.5-9B",
        },
        "Yi-1.5-34B": {
            DownloadSource.DEFAULT: "01-ai/Yi-1.5-34B",
            DownloadSource.MODELSCOPE: "01ai/Yi-1.5-34B",
        },
        "Yi-1.5-6B-Chat": {
            DownloadSource.DEFAULT: "01-ai/Yi-1.5-6B-Chat",
            DownloadSource.MODELSCOPE: "01ai/Yi-1.5-6B-Chat",
        },
        "Yi-1.5-9B-Chat": {
            DownloadSource.DEFAULT: "01-ai/Yi-1.5-9B-Chat",
            DownloadSource.MODELSCOPE: "01ai/Yi-1.5-9B-Chat",
        },
        "Yi-1.5-34B-Chat": {
            DownloadSource.DEFAULT: "01-ai/Yi-1.5-34B-Chat",
            DownloadSource.MODELSCOPE: "01ai/Yi-1.5-34B-Chat",
        },
    },
    template="yi",
)


register_model_group(
    models={
        "YiVL-6B-Chat": {
            DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-6B-hf",
        },
        "YiVL-34B-Chat": {
            DownloadSource.DEFAULT: "BUAADreamer/Yi-VL-34B-hf",
        },
    },
    template="yi_vl",
    vision=True,
)


register_model_group(
    models={
        "Yuan2-2B-Chat": {
            DownloadSource.DEFAULT: "IEITYuan/Yuan2-2B-hf",
            DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-2B-hf",
        },
        "Yuan2-51B-Chat": {
            DownloadSource.DEFAULT: "IEITYuan/Yuan2-51B-hf",
            DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-51B-hf",
        },
        "Yuan2-102B-Chat": {
            DownloadSource.DEFAULT: "IEITYuan/Yuan2-102B-hf",
            DownloadSource.MODELSCOPE: "YuanLLM/Yuan2.0-102B-hf",
        },
    },
    template="yuan",
)


register_model_group(
    models={
        "Zephyr-7B-Alpha-Chat": {
            DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-alpha",
            DownloadSource.MODELSCOPE: "AI-ModelScope/zephyr-7b-alpha",
        },
        "Zephyr-7B-Beta-Chat": {
            DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-7b-beta",
            DownloadSource.MODELSCOPE: "modelscope/zephyr-7b-beta",
        },
        "Zephyr-141B-ORPO-Chat": {
            DownloadSource.DEFAULT: "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
        },
    },
    template="zephyr",
)

代码中提到的大型模型名称包括:

  1. Baichuan-7B-Base
  2. Baichuan-13B-Base
  3. Baichuan-13B-Chat
  4. Baichuan2-7B-Base
  5. Baichuan2-13B-Base
  6. Baichuan2-7B-Chat
  7. Baichuan2-13B-Chat
  8. BLOOM-560M
  9. BLOOM-3B
  10. BLOOM-7B1
  11. BLOOMZ-560M
  12. BLOOMZ-3B
  13. BLOOMZ-7B1-mt
  14. BlueLM-7B-Base
  15. BlueLM-7B-Chat
  16. Breeze-7B
  17. Breeze-7B-Chat
  18. ChatGLM2-6B-Chat
  19. ChatGLM3-6B-Base
  20. ChatGLM3-6B-Chat
  21. ChineseLLaMA2-1.3B
  22. ChineseLLaMA2-7B
  23. ChineseLLaMA2-13B
  24. ChineseLLaMA2-1.3B-Chat
  25. ChineseLLaMA2-7B-Chat
  26. ChineseLLaMA2-13B-Chat
  27. CommandR-35B-Chat
  28. CommandR-Plus-104B-Chat
  29. CommandR-35B-4bit-Chat
  30. CommandR-Plus-104B-4bit-Chat
  31. DBRX-132B-Base
  32. DBRX-132B-Chat
  33. DeepSeek-LLM-7B-Base
  34. DeepSeek-LLM-67B-Base
  35. DeepSeek-LLM-7B-Chat
  36. DeepSeek-LLM-67B-Chat
  37. DeepSeek-Math-7B-Base
  38. DeepSeek-Math-7B-Chat
  39. DeepSeek-MoE-16B-Base
  40. DeepSeek-MoE-16B-v2-Base
  41. DeepSeek-MoE-236B-Base
  42. DeepSeek-MoE-16B-Chat
  43. DeepSeek-MoE-16B-v2-Chat
  44. DeepSeek-MoE-236B-Chat
  45. DeepSeekCoder-6.7B-Base
  46. DeepSeekCoder-7B-Base
  47. DeepSeekCoder-33B-Base
  48. DeepSeekCoder-6.7B-Chat
  49. DeepSeekCoder-7B-Chat
  50. DeepSeekCoder-33B-Chat
  51. Falcon-7B
  52. Falcon-11B
  53. Falcon-40B
  54. Falcon-180B
  55. Falcon-7B-Chat
  56. Falcon-40B-Chat
  57. Falcon-180B-Chat
  58. Gemma-2B
  59. Gemma-7B
  60. Gemma-2B-Chat
  61. Gemma-7B-Chat
  62. CodeGemma-2B
  63. CodeGemma-7B
  64. CodeGemma-7B-Chat
  65. InternLM-7B
  66. InternLM-20B
  67. InternLM-7B-Chat
  68. InternLM-20B-Chat
  69. InternLM2-7B
  70. InternLM2-20B
  71. InternLM2-7B-Chat
  72. InternLM2-20B-Chat
  73. Jambda-v0.1
  74. LingoWhale-8B
  75. LLaMA-7B
  76. LLaMA-13B
  77. LLaMA-30B
  78. LLaMA-65B
  79. LLaMA2-7B
  80. LLaMA2-13B
  81. LLaMA2-70B
  82. LLaMA2-7B-Chat
  83. LLaMA2-13B-Chat
  84. LLaMA2-70B-Chat
  85. LLaMA3-8B
  86. LLaMA3-70B
  87. LLaMA3-8B-Chat
  88. LLaMA3-70B-Chat
  89. LLaMA3-8B-Chinese-Chat
  90. LLaMA3-70B-Chinese-Chat
  91. LLaVA1.5-7B-Chat
  92. LLaVA1.5-13B-Chat
  93. Mistral-7B-v0.1
  94. Mistral-7B-v0.1-Chat
  95. Mistral-7B-v0.2
  96. Mistral-7B-v0.2-Chat
  97. Mixtral-8x7B-v0.1
  98. Mixtral-8x7B-v0.1-Chat
  99. Mixtral-8x22B-v0.1
  100. Mixtral-8x22B-v0.1-Chat
  101. OLMo-1B
  102. OLMo-7B
  103. OLMo-1.7-7B
  104. OpenChat3.5-7B-Chat
  105. Orion-14B-Base
  106. Orion-14B-Chat
  107. Orion-14B-Long-Chat
  108. Orion-14B-RAG-Chat
  109. Orion-14B-Plugin-Chat
  110. PaliGemma-3B-pt-224
  111. PaliGemma-3B-pt-448
  112. PaliGemma-3B-pt-896
  113. PaliGemma-3B-mix-224
  114. PaliGemma-3B-mix-448
  115. Phi-1.5-1.3B
  116. Phi-2-2.7B
  117. Phi3-3.8B-4k-Chat
  118. Phi3-3.8B-128k-Chat
  119. Qwen-1.8B
  120. Qwen-7B
  121. Qwen-14B
  122. Qwen-72B
  123. Qwen-1.8B-Chat
  124. Qwen-7B-Chat
  125. Qwen-14B-Chat
  126. Qwen-72B-Chat
  127. Qwen-1.8B-int8-Chat
  128. Qwen-1.8B-int4-Chat
  129. Qwen-7B-int8-Chat
  130. Qwen-7B-int4-Chat
  131. Qwen-14B-int8-Chat
  132. Qwen-14B-int4-Chat
  133. Qwen-72B-int8-Chat
  134. Qwen-72B-int4-Chat
  135. Qwen1.5-0.5B
  136. Qwen1.5-1.8B
  137. Qwen1.5-4B
  138. Qwen1.5-7B
  139. Qwen1.5-14B
  140. Qwen1.5-32B
  141. Qwen1.5-72B
  142. Qwen1.5-110B
  143. Qwen1.5-MoE-A2.7B
  144. Qwen1.5-Code-7B
  145. Qwen1.5-0.5B-Chat
  146. Qwen1.5-1.8B-Chat
  147. Qwen1.5-4B-Chat
  148. Qwen1.5-7B-Chat
  149. Qwen1.5-14B-Chat
  150. Qwen1.5-32B-Chat
  151. Qwen1.5-72B-Chat
  152. Qwen1.5-110B-Chat
  153. Qwen1.5-MoE-A2.7B-Chat
  154. Qwen1.5-Code-7B-Chat
  155. Qwen1.5-0.5B-int8-Chat
  156. Qwen1.5-0.5B-int4-Chat
  157. Qwen1.5-1.8B-int8-Chat
  158. Qwen1.5-1.8B-int4-Chat
  159. Qwen1.5-4B-int8-Chat
  160. Qwen1.5-4B-int4-Chat
  161. Qwen1.5-7B-int8-Chat
  162. Qwen1.5-7B-int4-Chat
  163. Qwen1.5-14B-int8-Chat
  164. Qwen1.5-14B-int4-Chat
  165. Qwen1.5-32B-int4-Chat
  166. Qwen1.5-72B-int8-Chat
  167. Qwen1.5-72B-int4-Chat
  168. Qwen1.5-110B-int4-Chat
  169. Qwen1.5-MoE-A2.7B-int4-Chat
  170. Qwen1.5-Code-7B-int4-Chat
  171. SOLAR-10.7B
  172. SOLAR-10.7B-Chat
  173. Skywork-13B-Base
  174. StarCoder2-3B
  175. StarCoder2-7B
  176. StarCoder2-15B
  177. Vicuna1.5-7B-Chat
  178. Vicuna1.5-13B-Chat
  179. XuanYuan-6B
  180. XuanYuan-70B
  181. XuanYuan-2-70B
  182. XuanYuan-6B-Chat
  183. XuanYuan-70B-Chat
  184. XuanYuan-2-70B-Chat
  185. XuanYuan-6B-int8-Chat
  186. XuanYuan-6B-int4-Chat
  187. XuanYuan-70B-int8-Chat
  188. XuanYuan-70B-int4-Chat
  189. XuanYuan-2-70B-int8-Chat
  190. XuanYuan-2-70B-int4-Chat
  191. XVERSE-7B
  192. XVERSE-13B
  193. XVERSE-65B
  194. XVERSE-65B-2
  195. XVERSE-7B-Chat
  196. XVERSE-13B-Chat
  197. XVERSE-65B-Chat
  198. XVERSE-MoE-A4.2B
  199. XVERSE-7B-int8-Chat
  200. XVERSE-7B-int4-Chat
  201. XVERSE-13B-int8-Chat
  202. XVERSE-13B-int4-Chat
  203. XVERSE-65B-int4-Chat
  204. Yayi-7B
  205. Yayi-13B
  206. Yi-6B
  207. Yi-9B
  208. Yi-34B
  209. Yi-6B-Chat
  210. Yi-34B-Chat
  211. Yi-6B-int8-Chat
  212. Yi-6B-int4-Chat
  213. Yi-34B-int8-Chat
  214. Yi-34B-int4-Chat
  215. Yi-1.5-6B
  216. Yi-1.5-9B
  217. Yi-1.5-34B
  218. Yi-1.5-6B-Chat
  219. Yi-1.5-9B-Chat
  220. Yi-1.5-34B-Chat
  221. YiVL-6B-Chat
  222. YiVL-34B-Chat
  223. Yuan2-2B-Chat
  224. Yuan2-51B-Chat
  225. Yuan2-102B-Chat
  226. Zephyr-7B-Alpha-Chat
  227. Zephyr-7B-Beta-Chat
  228. Zephyr-141B-ORPO-Chat

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/635200.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

以色列人Andi Gutmans开发的php zend

虽然目前php语言不行了【相关的文章前几年已经有人发过】&#xff0c;但这不是重点&#xff0c;重点是zend引擎的东西具有极大的技术价值&#xff0c;负责zend引擎实现的大佬都现在差不多都是40&#xff0c;50岁左右了&#xff0c;从1997&#xff0c;1998&#xff0c;2000到202…

Java基础之进制转换和位运算专题

什么是进制&#xff1f; 是数学中的一个概念&#xff0c;就是数据“逢几进位”。 例如&#xff1a;生活中用的计数方法 ---- 十进制。十进制就是数字逢十就要进一位。 例如&#xff1a;一个星期有7天&#xff0c;就是逢七进一&#xff1b;一个月有30天就是逢30进一&#xff1b;…

基于单片机和蓝牙控制的智能小车设计

摘要 &#xff1a; 本文设计了一种以智能手机为平台控制小车的控制系统&#xff0c;该系统以蓝牙为通信模块&#xff0c;手机通过蓝牙发送信号给小 车上的蓝牙模块&#xff0c;从而驱动电机实现小车各种运动&#xff0c;提供了一种无线遥控小车的新思路。设计了该系统的硬件与软…

思维导图-VPN

浏览器集成了受信任的机构的证书

python+selenium - UI自动框架之封装查找元素

单一的元素定位方法不能满足所有元素的定位&#xff0c;可以根据每个元素的特点来找到合适的方法&#xff0c;可以参考下图的方法&#xff1a; elementFind.py from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_con…

汇舟问卷:海外问卷项目适合工作室做吗?

这个项目适合工作室操作&#xff0c;国外问卷调查主要是利用填写问卷来赚取奖励。只要完成得越多&#xff0c;挣得也就越多。 这个项目的本质就是在线上进行简单的工作&#xff0c;只不过结算方式是以美元计算。 即使一份问卷只值1美元&#xff0c;但这也意味着收入达到了7元…

鸿蒙ArkUI-X跨平台技术:【SDK结构介绍】

ArkUI-X SDK目录结构介绍 简介 本文档配套ArkUI-X&#xff0c;将OpenHarmony ArkUI开发框架扩展到不同的OS平台&#xff0c;比如Android和iOS平台&#xff0c;让开发者基于ArkUI&#xff0c;可复用大部分的应用代码&#xff08;UI以及主要应用逻辑&#xff09;并可以部署到相…

ngnix 入门 二,docker启动nginx, 安装ssl 证书,使用配置文件,映射后端服务 ,提供给前端项目访问

搭建生产环境真不是人做的事&#xff0c;特别是对于一知半解的人。仅以此文献给各位技术人 说一下背景&#xff1a;项目前后端分离&#xff0c;前端 vue3 、小程序端 &#xff0c;后端 go 提供服务。 微信小程序需要使用 https 请求。 这就必须让我们想到nginx 了 想要达到的…

代码随想录算法训练营第二天| 977.有序数组的平方 、209.长度最小的子数组、 59.螺旋矩阵II

977. 有序数组的平方 题目链接&#xff1a;977. 有序数组的平方 文档讲解&#xff1a;代码随想录 状态&#xff1a;so easy 刚开始看到题目第一反应就是平方之后进行排序&#xff0c;数据量在 1 0 4 10^4 104&#xff0c;可以使用O(nlogn)的排序。但是更好的方式是使用双指针&a…

ArrayList与LinkedList

内存 内存缓存 预先将数据写到容器等数据存储单元中&#xff0c;就是软件内存缓存。 内存缓存淘汰机制 FIFO&#xff08;First in ,First Out&#xff09;&#xff08;先进先出&#xff09; LFU (Least Frequently Used) (频繁的最后淘汰) LRU(Least Recently Used) &#…

Socket同步通讯

目录 引言 1. 建立连接 2. 数据传输 3. 同步机制 4. 处理延迟 5. 安全性 6、一对一Socket同步通讯 客户端 代码分析 服务端 代码分析 7、服务端操作 1、首先我们先运行客户端代码 2、服务端点击Connect连接客户端 3、服务端输入信息传输到客户端 4、断开连接 引…

【笔记】软件架构师要点记录(1)

【笔记】软件架构师要点记录 20240517 20240517 连续性&#xff1a;恢复能力&#xff1b;可用性&#xff1a;保持稳定态的时长 增量开发模式&#xff1a;在增量开发中&#xff0c;每个增量都有明确的范围和功能&#xff0c;并按照特定的功能顺序完成。增量之间的范围划分在开发…

Flask CORS: 解决跨域资源共享问题的利器

文章目录 安装和启用 CORS配置 CORS拓展 在本文中&#xff0c;我们介绍了如何使用 Flask-CORS 扩展来解决跨域问题。Flask-CORS 是一个方便的工具&#xff0c;可以帮助我们轻松地实现跨域资源共享支持。 安装和启用 CORS 要开始使用 Flask-CORS&#xff0c;我们需要先安装它。…

腹部多器官分割的眼动引导双路径网络

文章目录 标题摘要方法实验结果 标题 摘要 这项研究提出了一种新的方法&#xff0c;名为眼动引导双路径网络&#xff08;Eye-Guided Dual-Path Network&#xff0c;EG-DPN&#xff09;&#xff0c;用于腹部多器官分割。这项工作的主要目标是提高医学影像分析中的多器官分割准…

express.js--token中间件验证及token解析(三)

主要作用 访问路由接口时&#xff0c;哪些需要校验token 通过token解析身份信息&#xff0c;就可以知道是哪个人 框架基本搭建express.js--基本用法及路由模块化(一)-CSDN博客 如何生成tokenexpress.js--生成token(二)-CSDN博客 middleware/index.js const jwt require(…

Vue 离线地图实现

效果图&#xff1a; 一、获取市的地图数据 DataV.geoAtlas 获取市地图数据 点击地图缩放至想要的市区域&#xff0c;通过右侧的链接打开网址&#xff0c;复制json数据。 二、获取镇地图数据 选择你想要的镇数据&#xff0c;点击下载 选择级别&#xff08;清晰度&#xff09…

如何搭建Sphinx文档

环境准备 Linux CentOS 7 方案 搭建一个文档网站&#xff0c;本文档使用的是tomcatsphinx。 Tomcat可以快速搭建出http服务&#xff0c;也可以使用apache httpd。 Sphinx作为文档网页自动生成工具&#xff0c;可以从reStructured文档转换为html文件。 Tomcat安装 创建/…

App玩转oCPX投放,打造低成本高转化的广告模型

随着广告主考核目标逐渐深化&#xff0c;以激活、注册等浅层指标为考核已经无法满足大部分广告主的投放诉求&#xff0c;越来越多的后端深化指标成为了广告主的核心诉求。OCPX应需而生&#xff0c;更好的助力广告主优化投放&#xff0c;全面提升转化效率。 在投放实践中&#…

【系统分析师】论文框架

文章目录 HA高可用集群软件1、需求分析2、架构设计3、技术选型&#xff1a;4、编码实现&#xff1a;5、测试验证&#xff1a;6、部署和运维&#xff1a; HA高可用集群软件 论文支持 文心一言查的 1、需求分析 明确业务需求&#xff0c;包括需要支持的用户数量、服务级别协议…

AI绘画Stable Diffusion制作文字光效指南,SD实现超炫文字光影效果!

大家好&#xff0c;我是小强 如果你经常刷短视频&#xff0c;那么你可能会在各大社交平台上见到了这样的文字光效&#xff0c;那么这种光线照射文字的效果是如何制作的呢&#xff1f; 这个教程将解密如何使用Stable Diffusion ControlNet来制作这种非常火的文字光效效果~&…