【并发专题】单例模式的线程安全(进阶理解篇)

目录

  • 背景
  • 前置知识
    • 类加载运行全过程
  • 单例模式的实现方式
    • 一、饿汉式
      • 基本介绍
      • 源码
      • 分析
    • 二、懒汉式
      • 基本介绍
      • 源码
      • 分析
      • 改进
    • 三、懒汉式单例终极解决方案(静态内部类)(推荐使用方案)
      • 基本介绍
      • 源码
      • 分析
  • 感谢

背景

最近学习了JVM之后,总感觉知识掌握不够深,所以想通过分析经典的【懒汉式单例】来加深一下理解。(主要是【静态内部类】实现单例的方式)。
如果小白想理解单例的话,也能看我这篇文章。我也通过了【前置知识】跟【普通懒汉式】、【双检锁懒汉】、【静态内部类】懒汉给大家分析了一下他们的线程安全性。但是,我这边没有完整的演进【懒汉式单例】历程。所以,会缺少思维上的递进。不过,我在最后的【感谢】名单里,提供了一个完整的【懒汉式单例演进】的链接,建议可以结合这个文章一起学习。

前置知识

类加载运行全过程

当我们用java命令运行某个类的main函数启动程序时,首先需要通过类加载器把主类加载到JVM。

package com.tuling.jvm;

public class Math {
    public static final int initData = 666;
    public static User user = new User();

    public int compute() {  //一个方法对应一块栈帧内存区域
        int a = 1;
        int b = 2;
        int c = (a + b) * 10;
        return c;
    }

    public static void main(String[] args) {
        Math math = new Math();
        math.compute();
    }
}

通过Java命令执行代码的大体流程如下:
在这里插入图片描述
其中loadClass的类加载过程有如下几步:
加载 >> 验证 >> 准备 >> 解析 >> 初始化 >> 使用 >> 卸载

  • 加载:在硬盘上查找并通过IO读入字节码文件,使用到类时才会加载,例如调用类的main()方法,new对象等等,在加载阶段会在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口
  • 验证:校验字节码文件的正确性
  • 准备:给类的静态变量分配内存,并赋予默认值
  • 解析:将符号引用替换为直接引用,该阶段会把一些静态方法(符号引用,比如main()方法)替换为指向数据所存内存的指针或句柄等(直接引用),这是所谓的静态链接过程(类加载期间完成),动态链接是在程序运行期间完成的将符号引用替换为直接引用,下节课会讲到动态链接
  • 初始化:对类的静态变量初始化为指定的值,执行静态代码块
    在这里插入图片描述

总结一下,上面说的加载 >> 验证 >> 准备 >> 解析 >> 初始化过程是由JVM帮我们进行的,所以,对我们程序员来说,【天生】就具备线程安全性(这个由JVM帮我们保证,无需我们关心)。

单例模式的实现方式

单例模式,是我们Java中很常见的一个设计模式。所以有这么一种说法:遇事不决,单例解决。
Java单例通常有2种,分别为:饿汉式、懒汉式

一、饿汉式

基本介绍

饿汉式(Eager Initialization,急切的初始化),在类加载时就创建单例实例,并在需要时直接返回该实例。这种方式的实现是线程安全的,因为在类加载过程中实例已经创建好了。

源码

public class SingletonTest {
    private static final SingletonTest me = new SingletonTest();
    
    public static SingletonTest me() {
        return me;
    }
    
    public static void main(String[] args) {
        System.out.println(SingletonTest.me());
        System.out.println(SingletonTest.me());
        System.out.println(SingletonTest.me());
    }
//    系统输出如下:
//    org.tuling.juc.singleton.SingletonTest@12a3a380
//    org.tuling.juc.singleton.SingletonTest@12a3a380
//    org.tuling.juc.singleton.SingletonTest@12a3a380
}

分析

因为单例对象SingletonTest 是静态成员变量,所以,在JVM类加载过程中==(加载-》验证-》准备-》解析-》初始化)==的【解析】阶段已经被JVM初始化了,所以,由JVM保证了线程安全性。

二、懒汉式

基本介绍

懒汉式(Lazy Initialization),在首次调用时创建单例实例,存在线程安全问题。如果多个线程同时进入判断条件,可能会创建多个实例。

源码

public class SingletonTest {
    private static SingletonTest me;

    public static SingletonTest me() {
        if(me == null) {
            me = new SingletonTest();
        }
        return me;
    }

    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            new Thread(()->{
                System.out.println(SingletonTest.me());
            }).start();
        }
    }
}

输出结果如下
在这里插入图片描述

分析

为什么上面这段代码不是线程安全的呢?我们举一个极端的例子,如下图所示:
在这里插入图片描述
在没有锁机制的存在情况下,多线程环境里面可能会出现上述的并发执行情况。在线程1判断完me == null之后,即将开始执行new之前,线程2也刚好在判断me == null,这是因为线程1还没有执行new操作,所以线程2判断肯定是null的,于是也开始new。这就是线程安全问题所在。
(PS:小白们一定要理解上面这个图。虽然很简单,但是说它是你们迈向,或者培养【并发意识】的启蒙都不为过。)

改进

为了解决上面的问题,大牛们进行了改进,使用了【双检锁+volatile】机制,【双检锁】,即:双重检查锁。代码如下:

public class SingletonTest {
    private static volatile SingletonTest me;

    public static SingletonTest me() {
        if(me == null) {
            synchronized (SingletonTest.class) {
                if (me == null) {
                    me = new SingletonTest();
                }
            }
        }
        return me;
    }
}

上面的改进,关键点如下:

  1. 使用了volatile关键字修饰单例对象me
  2. 在获取单例对象的时候,判断了两次if(me == null)
  3. 第二次判断if(me == null)之前,先加了锁

第二、三点我就不说了,大家可以看看最下面【感谢】的友链。这里重点说说第一点。
估计小白会很难理解,为什么一定要volatile关键字修饰,不用可以吗?答案是:不可以。因为,volatile能禁止重排序。什么是【重排序呢】?说的简单点,就是JVM,甚至是CPU为了性能,可能会在不改变语义的情况下修改我们的代码执行顺序。比如,当我们new SingletonTest()的时候,你以为只有一步操作,实际上,它有3步,如下:

memory = allocate(); // 1.分配对象内存空间
instance(memory); // 2.初始化对象
instance = memory; // 3.设置instance指向刚分配的内存地址,此时instance!=null

但事实上,经过重排序之后可能会变成下面的执行顺序:

memory = allocate(); // 1.分配对象内存空间
instance = memory; // 3.设置instance指向刚分配的内存地址,此时instance!=null
instance(memory); // 2.初始化对象

然后大家再用上面的【并发启蒙】意识,自己画个图看下,还能线程安全吗?
所以,需要使用volatile关键字,告诉底层JVM或者CPU,不要帮我重排序这个对象!于是就避免了上面的并发线程安全问题了。

三、懒汉式单例终极解决方案(静态内部类)(推荐使用方案)

基本介绍

这里通过利用JVM类加载【天生线程安全】的特性,来帮助实现【懒汉式】的单例。如何做到呢?答案是【静态内部类】。

源码

public class SingletonTest {
    /** 单例对象,可以直接调用配置属性  */
    private static class Holder {
        private static SingletonTest me = new SingletonTest();
    }
    public static SingletonTest me() {
        return Holder.me;
    }

    public static void main(String[] args) {
        int threadCount = 10000;
        for (int i = 0; i < threadCount; i++) {
            new Thread(()->{
                System.out.println(SingletonTest.me());
            }).start();
        }
    }
}

上面的代码,新建了1W个线程来调用单例,我们发现,结果都是一样,同一个对象。
在这里插入图片描述

分析

为什么上面,通过静态内部类能保证线程安全性呢?这个我们在【前置知识】已经说过了,是由JVM保证了线程安全性。
在这里插入图片描述
如上图所示,只有当我们使用了SingletonTest.me()的时候,才会去开始加载Holder静态内部类,这就是它实现【懒汉式】的原因(延迟加载)。

感谢

感谢【作者:weixin_47196090】的深度好文,《懒汉式单例演进到DCL懒汉式 深度全面解析》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/63462.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Permute 3 for mac音视频格式转换

Permute是一款Mac平台上的媒体格式转换软件&#xff0c;由Chaotic Software开发。它可以帮助用户快速地将各种音频、视频和图像文件转换成所需格式&#xff0c;并提供了一些常用工具以便于用户进行编辑和处理。 Permute的主要特点包括&#xff1a; - 支持大量格式&#xff1a;支…

2020年09月 Python(一级)真题解析#中国电子学会#全国青少年软件编程等级考试

一、单选题 第1题 Python自带的编程环境是&#xff1f; A&#xff1a;PyScripter B&#xff1a;Spyder C&#xff1a;Notepad D&#xff1a;IDLE 正确的答案是&#xff1a;D Python自带的编程环境是IDLE&#xff08;Integrated Development and Learning Environment&a…

【c语言初级】c++基础

文章目录 1. C关键字2. 命名空间2.1 命名空间定义2.2 命名空间使用 3. C输入&输出4. 缺省参数4.1 缺省参数概念4.2 缺省参数分类 5. 函数重载5.2 C函数重载的原理--名字修饰采用C语言编译器编译后结果 1. C关键字 C是在C的基础之上&#xff0c;容纳进去了面向对象编程思想…

【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码、数据、讲解 &#x1f4a5;1 概述 由于能源的日益匮乏&#xff0c;电力需求的不断增长等&#xff0c;配电网中分布式能源渗透率不断提高&#xff0c;且逐渐向主动配电网方…

Android平台一对一音视频通话方案对比:WebRTC VS RTMP VS RTSP

一对一音视频通话使用场景 一对一音视频通话都需要稳定、清晰和流畅&#xff0c;以确保良好的用户体验&#xff0c;常用的使用场景如下&#xff1a; 社交应用&#xff1a;社交应用是一种常见的使用场景&#xff0c;用户可以通过音视频通话进行面对面的交流&#xff1b;在线教…

OLAP ModelKit Crack,ADO.NET和IList

OLAP ModelKit Crack,ADO.NET和IList OLAP ModelKit是一个多功能的.NET OLAP组件&#xff0c;用C#编写&#xff0c;只包含100%托管代码。它具有XP主题的外观&#xff0c;并能够使用任何.NET数据源(ADO.NET和IList)。借助任何第三方组件(尤其是图表组件)呈现数据的能力扩展了产品…

Pytorch深度学习-----损失函数(L1Loss、MSELoss、CrossEntropyLoss)

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用&#xff08;ToTensor&#xff0c;Normalize&#xff0c;Resize &#xff0c;Co…

【Hystrix技术指南】(5)Command创建和执行实现

创建流程 构建HystrixCommand或者HystrixObservableCommand对象 *使用Hystrix的第一步是创建一个HystrixCommand或者HystrixObservableCommand对象来表示你需要发给依赖服务的请求。 若只期望依赖服务每次返回单一的回应&#xff0c;按如下方式构造一个HystrixCommand即可&a…

24届近5年江南大学自动化考研院校分析

今天给大家带来的是江南大学控制考研分析 满满干货&#xff5e;还不快快点赞收藏 一、江南大学 学校简介 江南大学&#xff08;Jiangnan University&#xff09;是国家“双一流”建设高校&#xff0c;“211工程”、“985工程优势学科创新平台”重点建设高校&#xff0c;入选…

【linux源码学习】【实验篇】使用bochs运行linux0.11系统(搭建一个自己的工作站)

目录 背景资源获取bochs环境搭建windowsbochs环境搭建linux声明 背景 最近看赵炯老师的《linux内核完全注释》&#xff0c;然后在最后一个习题里面看到使用bochs跑一下0.11的内核代码&#xff0c;本来觉得很难&#xff0c;但是如果做过一遍就会发现其实很简单&#xff0c;这个…

在centos7上使用非编译方式安装ffmpeg

很多在centos7上安装ffmpeg的教程都需要使用编译方式的安装&#xff1b;编译时间较长而且需要配置; 后来搜索到可以通过加载rpm 源的方式实现快速便捷操作 第一种方式&#xff1a; 首先需要安装yum源&#xff1a; yum install epel-release yum install -y https://mirrors.…

内网安全-隧道技术SSH实现通信DNS上线与通信CS上线Linux主机

内网安全-隧道技术&SSH实现通信&DNS上线与通信&CS上线Linux主机 一、DNS隧道技术 DNS简介&#xff1a;DNS协议为应用层协议&#xff0c;区域传输时用tcp协议&#xff0c;域名解析时用udp协议 ###通过DNS隧道绕过防火墙&#xff0c;实现CS上线 实验背景&#xff…

在收到满意的大厂offer之前,面试也是至关重要的,那么该如何做好IT类的面试呢?

方向一&#xff1a;分享你面试IT公司的小技巧 沉着冷静应对刁难&#xff1a;应试场上&#xff0c;考官往往会针对求职者的薄弱点提出一些带有挑战性的问题。面对这样的考题&#xff0c;你一定要心平气和&#xff0c;较为委婉地加以反驳和申诉&#xff0c;绝不可情绪激动&#x…

ELK、ELFK日志分析系统

菜单一、ELK简介1.1 ELK组件说明1.1.1 ElasticSearch1.1.2 Kiabana1.1.3 Logstash 1.2 可以添加的其它组件1.2.1 Filebeat1.2.2 缓存/消息队列&#xff08;redis、kafka、RabbitMQ等&#xff09;1.2.3 Fluentd 1.3 为什么要用ELK1.4 完整日志系统的基本特征1.5 ELK 的工作原理 …

python+requests+json 接口测试思路示例

实际项目中用python脚本实现接口测试的步骤&#xff1a; 1 发送请求&#xff0c;获取响应 》》2 提取响应里的数据&#xff0c;对数据进行必要的处理 》》3 断言响应数据是否与预期一致 以豆瓣接口为例&#xff0c;做一个简单的接口测试吧。使用到的知识涉及requests库&…

Glass指纹识别工具,多线程Web指纹识别工具-Chunsou

Glass指纹识别工具&#xff0c;多线程Web指纹识别工具-Chunsou。 Glass指纹识别工具 Glass一款针对资产列表的快速指纹识别工具&#xff0c;通过调用Fofa/ZoomEye/Shodan/360等api接口快速查询资产信息并识别重点资产的指纹&#xff0c;也可针对IP/IP段或资产列表进行快速的指…

C语言有关文件的操作

打开文件与关闭文件 在编写代码时&#xff0c;我有一个习惯是“保证一一对应”。 写下代码fopen()之后&#xff0c;还没有写对文件进行增删查改等操作的代码&#xff0c;先立刻写上fclose()&#xff0c;避免忘记关闭FILE* fd的情况。 不关闭fd&#xff0c;在fopen()次数较少的…

怎么在树莓派环境上搭建web网站,并发布到外网可访问,今天教给大家

怎么在树莓派上搭建web网站&#xff0c;并发布到外网可访问&#xff1f; 文章目录 怎么在树莓派上搭建web网站&#xff0c;并发布到外网可访问&#xff1f;概述使用 Raspberry Pi Imager 安装 Raspberry Pi OS测试 web 站点安装静态样例站点 将web站点发布到公网安装 Cpolarcpo…

【Redis】——AOF持久化

什么是AOF日志 AOF日志是redis为数据的持久化提供了的一个技术,日志里面记录着执行redis写命令。每当redis执行一条写命令的时候&#xff0c;就会将该命令记录 到AOF日志当中。当redis启动的时候&#xff0c;可以加载AOF日志中的所有指令&#xff0c;并执行这些指令恢复所有的…

[国产MCU]-BL602开发实例-定时器

定时器 文章目录 定时器1、BL602定时器介绍2、定时器驱动API介绍3、定时器使用实例3.1 单次计时3.2 持续计时通用定时器,用于定时,当时间到达我们所设置的定时时间会产生定时中断,可以用来完成定时任务。本文将详细介绍如何使用BL602的定时器功能。 1、BL602定时器介绍 BL6…