用Python获取链家二手房房源数据,做可视化图分析数据

前言

数据采集的步骤是固定:

  1. 发送请求, 模拟浏览器对于url地址发送请求
  2. 获取数据, 获取网页数据内容 --> 请求那个链接地址, 返回服务器响应数据
  3. 解析数据, 提取我们需要的数据内容
  4. 保存数据, 保存本地文件

所需模块

win + R 输入cmd 输入安装命令 pip install 模块名 (如果你觉得安装速度比较慢, 你可以切换国内镜像源)

# 数据请求模块 第三方模块 需要安装 pip install requests
import requests
# 数据解析模块 第三方模块 需要安装 pip install parsel
import parsel
# 导入csv模块 内置模块 不需要安装
import csv  # 固定模板
# 导入pandas模块
import pandas as pd

二手房源数据获取

请求数据

# 模拟浏览器
headers = {
    # 用户代理 表示浏览器基本身份信息
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36'
}
# 请求链接
url = 'https://cs.lianjia.com/ershoufang/'
# 发送请求
response = requests.get(url=url, headers=headers)
# 输出内容 <Response [200]> 响应对象 表示请求成功
print(response)

解析数据

我们这次选用css选择器: 根据标签属性提取数据内容

  • 获取所有房源所在li标签
selector = parsel.Selector(response.text)  # 选择器对象
# 获取所有房源所在li标签
lis = selector.css('.sellListContent li .info')
  • for循环遍历
for li in lis:
    title = li.css('.title a::text').get()  # 标题
    area_info = li.css('.positionInfo a::text').getall()  # 区域信息
    area_1 = area_info[0]  # 小区
    area_2 = area_info[1]  # 区域
    totalPrice = li.css('.totalPrice span::text').get()  # 总价
    unitPrice = li.css('.unitPrice span::text').get().replace('元/平', '')  # 单价
    houseInfo = li.css('.houseInfo::text').get().split(' | ')  # 房源信息
    HouseType = houseInfo[0]  # 户型
    HouseArea = houseInfo[1].replace('平米', '')  # 面积
    HouseFace = houseInfo[2]  # 朝向
    HouseInfo_1 = houseInfo[3]  # 装修
    fool = houseInfo[4]  # 楼层
    HouseInfo_2 = houseInfo[-1]  # 建筑结构
    href = li.css('.title a::attr(href)').get()  # 详情页
    dit = {
        '标题': title,
        '小区': area_1,
        '区域': area_2,
        '总价': totalPrice,
        '单价': unitPrice,
        '户型': HouseType,
        '面积': HouseArea,
        '朝向': HouseFace,
        '装修': HouseInfo_1,
        '楼层': fool,
        '年份': date,
        '建筑结构': HouseInfo_2,
        '详情页': href,
    }
    print(dit)

保存数据

f = open('二手房.csv', mode='w', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=[
    '标题',
    '小区',
    '区域',
    '总价',
    '单价',
    '户型',
    '面积',
    '朝向',
    '装修',
    '楼层',
    '年份',
    '建筑结构',
    '详情页',
])
csv_writer.writeheader()

接下来就是数据可视化

二手房源户型分布

from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

c = (
    Pie()
    .add(
        "",
        [
            list(z)
            for z in zip(house_type, house_num)
        ],
        center=["40%", "50%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="二手房源户型分布"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.load_javascript()

二手房源朝向分布

face_type = df['朝向'].value_counts().index.to_list()
face_num = df['朝向'].value_counts().to_list()
c = (
    Pie()
    .add(
        "",
        [
            list(z)
            for z in zip(face_type, face_num)
        ],
        center=["40%", "50%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="二手房源朝向分布"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.render_notebook()

二手房源装修分布

face_type = df['装修'].value_counts().index.to_list()
face_num = df['装修'].value_counts().to_list()
c = (
    Pie()
    .add(
        "",
        [
            list(z)
            for z in zip(face_type, face_num)
        ],
        center=["40%", "50%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="二手房源装修分布"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.render_notebook()

二手房源年份分布

face_type = df['年份'].value_counts().index.to_list()
face_num = df['年份'].value_counts().to_list()
c = (
    Pie()
    .add(
        "",
        [
            list(z)
            for z in zip(face_type, face_num)
        ],
        center=["40%", "50%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="二手房源年份分布"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.render_notebook()

二手房源建筑结构分布

face_type = df['建筑结构'].value_counts().index.to_list()
face_num = df['建筑结构'].value_counts().to_list()
c = (
    Pie()
    .add(
        "",
        [
            list(z)
            for z in zip(face_type, face_num)
        ],
        center=["40%", "50%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="二手房源建筑结构分布"),
        legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
#     .render("pie_scroll_legend.html")
)
c.render_notebook()

各大区域房价平均价

avg_salary = df.groupby('区域')['总价'].mean()
CityType = avg_salary.index.tolist()
CityNum = [int(a) for a in avg_salary.values.tolist()]
from pyecharts.charts import Bar
# 创建柱状图实例
c = (
    Bar()
    .add_xaxis(CityType)
    .add_yaxis("", CityNum)
    .set_global_opts(
        title_opts=opts.TitleOpts(title="各大区域房价平均价"),
        visualmap_opts=opts.VisualMapOpts(
            dimension=1,
            pos_right="5%",
            max_=30,
            is_inverse=True,
        ),
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45))  # 设置X轴标签旋转角度为45度
    )
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False),
        markline_opts=opts.MarkLineOpts(
            data=[
                opts.MarkLineItem(type_="min", name="最小值"),
                opts.MarkLineItem(type_="max", name="最大值"),
                opts.MarkLineItem(type_="average", name="平均值"),
            ]
        ),
    )
)

c.render_notebook()

各大区域房价单价平均价格

import pandas as pd
from pyecharts.charts import Bar
import pyecharts.options as opts

# 清理数据并将'单价'列转换为整数类型
df['单价'] = df['单价'].str.replace(',', '').astype(int)

# 计算平均价
avg_salary = df.groupby('区域')['单价'].mean()

# 获取城市类型和城市平均价格
CityType = avg_salary.index.tolist()
CityNum = [int(a) for a in avg_salary.values.tolist()]

# 创建柱状图实例
c = (
    Bar()
    .add_xaxis(CityType)
    .add_yaxis("", CityNum)
    .set_global_opts(
        title_opts=opts.TitleOpts(title="各大区域房价单价平均价格"),
        visualmap_opts=opts.VisualMapOpts(
            dimension=1,
            pos_right="5%",
            max_=30,
            is_inverse=True,
        ),
        xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45))  # 设置X轴标签旋转角度为45度
    )
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False),
        markline_opts=opts.MarkLineOpts(
            data=[
                opts.MarkLineItem(type_="min", name="最小值"),
                opts.MarkLineItem(type_="max", name="最大值"),
                opts.MarkLineItem(type_="average", name="平均值"),
            ]
        ),
    )
)

# 在Notebook中显示柱状图
c.render_notebook()


适合练手的25个Python案例源码分享,总有一个你想要的

👇问题解答 · 源码获取 · 技术交流 · 抱团学习请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/63415.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Gpt微信小程序搭建的前后端流程 - 前端小程序部分-1.基础页面框架的静态设计(二)

Gpt微信小程序搭建的前后端流程 - 前端小程序部分-1.基础页面框架的静态设计(二) 在开始这个专栏&#xff0c;我们需要找一个小程序为参考&#xff0c;参考和仿照其界面&#xff0c;聊天交互模式。 这里参考小程序-小柠AI智能聊天&#xff0c;可自行先体验。 该小程序主要提供了…

梳理日常开发涉及的负载均衡

负载均衡是当前分布式微服务时代最能提及的词之一&#xff0c;出于对分层、解耦、弱依赖、可配置、可靠性等概念的解读&#xff0c;一对一的模式变得不再可信赖&#xff0c;千变万化的网络环境中&#xff0c;冗余和备份显得格外重要&#xff0c;稍大型的系统就会存在大量微服务…

瞄准产业应用,大模型加持的深兰科技AI虚拟数字人落地业务场景

伴随ChatGPT的问世&#xff0c;在技术与商业运作上都日渐发展成熟的AI数字人产业正持续升温。 目前的AI数字人不仅拥有超高“颜值”&#xff0c;同时还拥有更为丰富的、细腻的表情和动作。更有甚者&#xff0c;AI数字人已经具备自定义构建知识图谱、自主对话、不断学习成长的能…

Win7 专业版Windows time w32time服务电脑重启后老是已停止

环境&#xff1a; Win7 专业版 问题描述&#xff1a; Win7 专业版Windows time w32time服务电脑重启后老是已停止 解决方案&#xff1a; 1.检查启动Remote Procedure Call (RPC)、Remote Procedure Call (RPC) Locator&#xff0c;DCOM Server Process Launcher这三个服务是…

.Net6 Web Core API --- AOP -- log4net 封装 -- MySQL -- txt

目录 一、引入 NuGet 包 二、配置log4net.config 三、编写Log4net封装类 四、编写日志记录类 五、AOP -- 拦截器 -- 封装 六、案例编写 七、结果展示 一、引入 NuGet 包 log4net Microsoft.Extensions.Logging.Log4Net.AspNetCore MySql.Data ---- MySQL…

Embedding入门介绍以及为什么Embedding在大语言模型中很重要

Embeddings技术简介及其历史概要 在机器学习和自然语言处理中&#xff0c;embedding是指将高维度的数据&#xff08;例如文字、图片、音频&#xff09;映射到低维度空间的过程。embedding向量通常是一个由实数构成的向量&#xff0c;它将输入的数据表示成一个连续的数值空间中…

AcWing1171. 距离(lcatarjan)

输入样例1&#xff1a; 2 2 1 2 100 1 2 2 1输出样例1&#xff1a; 100 100输入样例2&#xff1a; 3 2 1 2 10 3 1 15 1 2 3 2输出样例2&#xff1a; 10 25 #include<bits/stdc.h> using namespace std; typedef long long ll; const int N2e55; int n,m,x,y,k,r…

Android Tencent Shadow 插件接入指南

Android Tencent Shadow 插件接入指南 插件化简述一、clone 仓库二、编译运行官方demo三、发布Shadow到我们本地仓库3.1、安装Nexus 3.x版本3.2、修改发布配置3.3、发布仓库3.4、引用仓库包 四、编写我们自己的代码4.1、新建项目导入maven等共同配置4.1.1、导入buildScript4.1.…

C++ Lambda表达式的完整介绍

一、Lambda表达式概述 c在c11标准中引入了lambda表达式&#xff0c;一般用于定义匿名函数&#xff0c;lambda表达式&#xff08;也称为lambda函数&#xff09;是在调用或作为函数参数传递的位置处定义匿名函数对象的便捷方法。通常&#xff0c;lambda用于封装传递给算法或异步…

QT以管理员身份运行

以下配置后&#xff0c;QT在QT Creator调试时&#xff0c;或者生成的.exe程序&#xff0c;都将会默认以管理员身份运行。 一、MSVC编译器 1、在Pro文件中添加以下代码&#xff1a; QMAKE_LFLAGS /MANIFESTUAC:\"level\requireAdministrator\ uiAccess\false\\" …

vue 标题文字字数过长超出部分用...代替 动态显示

效果: 浏览器最大化: 浏览器缩小: 代码: html: <div class"title overflow">{{item.name}}</div> <div class"content overflow">{{item.content}}</div> css: .overflow {/* 一定要加宽度 */width: 90%;/* 文字的大小 */he…

JMeter命令行执行+生成HTML报告

1、为什么用命令行模式 使用GUI方式启动jmeter&#xff0c;运行线程较多的测试时&#xff0c;会造成内存和CPU的大量消耗&#xff0c;导致客户机卡死&#xff1b; 所以一般采用的方式是在GUI模式下调整测试脚本&#xff0c;再用命令行模式执行&#xff1b; 命令行方式支持在…

04-4_Qt 5.9 C++开发指南_时间日期与定时器

文章目录 1. 时间日期相关的类2. 源码2.1 可视化UI设计2.2 dialog.h2.3 dialog.cpp 1. 时间日期相关的类 时间日期是经常遇到的数据类型&#xff0c;Qt 中时间日期类型的类如下。 QTime:时间数据类型&#xff0c;仅表示时间&#xff0c;如 15:23:13。 QDate:日期数据类型&…

jmeter 5.1彻底解决中文上传乱码

1.修改源码,然后重新打jar包,就是所有上传文件名重新获取文件名 参考链接:多种Jmeter中文乱码问题处理方法 - 51Testing软件测试网 2.修改Advanced,必须选java

SSM(Vue3+ElementPlus+Axios+SSM前后端分离)--功能实现[五]

文章目录 SSM--功能实现实现功能09-带条件查询分页显示列表需求分析/图解思路分析代码实现测试分页条件查询带条件分页查询显示效果 实现功能10-添加家居表单前端校验需求分析/图解思路分析代码实现完成测试测试页面效果 实现功能11-添加家居表单后端校验需求分析/图解思路分析…

第八次作业

1、什么是数据认证&#xff0c;有什么作用&#xff0c;有哪些实现的技术手段&#xff1f; 数据认证的官方回答&#xff1a;数字认证证书它是以数字证书为核心的加密技术可以对网络上传输的信息进行加密和解密、数字签名和签名验证&#xff0c;确保网上传递信息的安全性、完整性…

Squeeze-and-Excitation Networks阅读笔记一

文章目录 Abstract1 INTRODUCTION Abstract 卷积算子&#xff08;convolution operator&#xff09;是卷积神经网络&#xff08;cnn&#xff09;的核心组成部分&#xff0c;它使网络能够通过融合每层局部接受域内的空间和通道信息来构建信息特征。广泛的先前研究已经调查了这种…

CSS调色网有哪些

本文章转载于湖南五车教育&#xff0c;仅用于学习和讨论&#xff0c;如有侵权请联系 1、https://webgradients.com/ Wbgradients 是一个在线调整渐变色的网站 &#xff0c;可以根据你想要的调整效果&#xff0c;同时支持复制 CSS 代码&#xff0c;可以更好的与开发对接。 Wbg…

今天开始学习如何正式调查

本节要讲解三个内容 样本容量 调查方式 调查问卷的回收 在正式调查之前需要确定样本容量 就说要准备调查多少人确定好样本容量之后又要考虑设计的调查问卷 是以什么样的方式发出去 问卷的回收又要注意什么问题 要讲的主要内容 先看样本容量 样本容量确定的基本原…

IO(JavaEE初阶系列8)

目录 前言&#xff1a; 1.文件 1.1认识文件 1.2结构和目录 1.3文件路径 1.4文本文件vs二进制文件 2.文件系统的操作 2.1Java中操作文件 2.2File概述 2.2.1构造File对象 2.2.2File中的一些方法 3.文件内容的操作 3.1字节流 3.1.1InPutStream的使用方法 3.1.2OutPu…