C++设计模式|结构型 适配器模式

1.什么是适配器模式? 

可以将⼀个类的接⼝转换成客户希望的另⼀个接⼝,主要⽬的是 充当两个不同接⼝之间的桥梁,使得原本接⼝不兼容的类能够⼀起⼯作。

2. 适配器模式的组成

(1)接口类,给客户端调用;(2)被适配者类;(3)适配器类。

3.适配器模式的分类

适配器模式一般分为类适配器模式和对象适配器模式。

(1)类适配器模式:适配器类通过继承适配者类(多重继承),达到适配目的,部分语言可能不支持多重继承(如C#)。

(2)对象适配器模式:适配器类中存放适配者类的实例对象,调用它来达到适配目的,该模式较常用。下面的题目我们使用第二种类型来进行求解。

下面我们看一下《大话设计模式》这本书对适配器模式的介绍与实现:

 不难看出,适配器模式的适配器类Adapter继承了原始的客户接口Target,并且适配器类Adapter里面包含了一个待适配类的对象,重写接口中的虚函数,实际调用的是这个对象的功能函数。在使用适配器模式时,客户端调用的接口会从原来的target变成现在的Adapter.

4.c++实现适配器模式

题目描述

小明购买了一台新电脑,该电脑使用 TypeC 接口,他已经有了一个USB接口的充电器和数据线,为了确保新电脑可以使用现有的USB接口充电器和数据线,他购买了一个TypeC到USB的扩展坞。

请你使用适配器模式设计并实现这个扩展坞系统,确保小明的新电脑既可以通过扩展坞使用现有的USB接口充电线和数据线,也可以使用TypeC接口充电。

输入描述

题目包含多行输入,第一行输入一个数字 N (1 < N <= 20),表示后面有N组测试数据。

之后N行都是一个整数,1表示使用电脑本身的TypeC接口,2表示使用扩展坞的USB接口充电。

输出描述

根据每行输入,输出相应的充电信息。

输入示例

3
1
2
1

输出示例

TypeC
USB Adapter
TypeC

代码实现:

我们就按照大话设计模式介绍的过程来实现这些功能。代码如下:

#include<iostream>
using namespace std;


//实现接口类(原来的老接口)
class Interface{
public:
    //因为接口类
    virtual void Charge(){
        cout<<"TypeC"<<endl;
    }
    
};

//待适配的类
class USB{
public:
    //需要使用适配器进行转换,所以打印了USB Adapter
    void USBCharge(){
        cout<<"USB Adapter"<<endl;
    }
    
};

//适配器类, 要继承老接口类
class Adapter: public Interface{
public:
    //要包含一个待适配的对象
    Adapter(){ this->usb = new USB(); }
    ~Adapter()
    { 
        if(this->usb != nullptr)
        {
            delete this->usb;
            this->usb = nullptr;
        } 
        
    }
    //多态完成转换
    virtual void Charge(){
        this->usb->USBCharge();
    }
private:   
    USB* usb ;
};

int main(){
    int N;
    cin>>N;
    //实际在使用适配者模式时,新的接口已经变成了适配器
    Adapter * newInterface = new Adapter();
    while(N--){
        int choice;
        cin>>choice;
        if(choice == 1){
            newInterface->Interface::Charge();
        }
        else if(choice == 2){
            newInterface->Charge();
        }
    }
    
    delete newInterface;
    
    return 0;
}

因为题目要求还要打印原来的TypeC,所以我在红框里使用了继承下来的原始充电方式。 而newInterface->Charge();这行代码就是还原的适配器模式了。

 

上述内容如有错误之处,还请各位小伙伴批评指正!此致,敬礼!!!

这里也推荐一篇很好的博文,将适配器模式讲的很清楚: 

设计模式之适配器模式(C++)_c++ 设计模式适配器-CSDN博客icon-default.png?t=N7T8https://zhaitianbao.blog.csdn.net/article/details/129406741

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/633934.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue打包部署到springboot,通过tomcat运行

tomcat默认端口 8080springboot端口 9132vue 端口 9131 框架 项目是基于SpringBootVue前后端分离的仓库管理系统 后端&#xff1a;SpringBoot MybatisPlus前端&#xff1a;Node.js Vue element-ui数据库&#xff1a;mysql 一. 打包Vue项目 cmd中输入命令 npm run build 后…

PHP在线制作表白网源码

PHP在线制作表白网源码&#xff0c;送女友个惊喜吧&#xff0c;无数据库&#xff0c;上传就能用&#xff0c;后台/admin&#xff0c;账号密码都是admin 百度网盘&#xff1a;https://pan.baidu.com/s/1rbD2_8IsP9UPLK-cdgEXfA?pwdre59

前端绘制流程节点数据

根据数据结构和节点的层级、子节点id&#xff0c;前端自己绘制节点位置和关联关系、指向、已完成节点等 <template><div><div>通过后端节点和层级&#xff0c;绘制出节点以及关联关系等</div><div class"container" ref"container&…

本地centos7+docker+ollama+gpu部署

1、一台有 NVIDIA GPU 驱动的机器 2、Docker CE安装 # 删除旧版本的 Docker&#xff08;如果存在&#xff09; sudo yum remove -y docker docker-common docker-selinux docker-engine # 安装必要的软件包&#xff1a; sudo yum install -y yum-utils device-mapper-persiste…

springboot3项目练习详细步骤(第四部分:文件上传、登录优化、多环境开发)

目录 本地文件上传 接口文档 业务实现 登录优化 SpringBoot集成redis 实现令牌主动失效机制 多环境开发 本地文件上传 接口文档 业务实现 创建FileUploadController类并编写请求方法 RestController public class FileUploadController {PostMapping("/upload&…

EPBU/MOBI转PDF

--痛苦 --不爱BB 直接上码。 写了一个java方法&#xff0c;转epub 或者mobi 为 pdf的方法 &#xff08;单个转换&#xff09; import java.io.BufferedReader; import java.io.File; import java.io.IOException; import java.io.InputStreamReader;public class EbookConvert…

【HarmonyOS4学习笔记】《HarmonyOS4+NEXT星河版入门到企业级实战教程》课程学习笔记(八)

课程地址&#xff1a; 黑马程序员HarmonyOS4NEXT星河版入门到企业级实战教程&#xff0c;一套精通鸿蒙应用开发 &#xff08;本篇笔记对应课程第 15 节&#xff09; P15《14.ArkUI组件-状态管理state装饰器》 回到最初的 Hello World 案例&#xff0c;首先验证 如果删掉 State…

【BSP开发经验】用户态栈回溯技术

前言 在内核中有一个非常好用的函数dump_stack, 该函数在我们调试内核的过程中可以打印出函数调用关系&#xff0c;该函数可以帮助我们进行内核调试&#xff0c;以及让我们了解内核的调用关系。同时当内核发生崩溃的时候就会自己将自己的调用栈输出到串口。 栈回溯非常有利于我…

动态规划(算法)---01.斐波那契数列模型_第N个泰波那契数

前言&#xff1a; 有一个很著名的公式 “程序数据结构算法”。 算法是模型分析的一组可行的&#xff0c;确定的&#xff0c;有穷的规则。通俗的说&#xff0c;算法也可以理解为一个解题步骤&#xff0c;有一些基本运算和规定的顺序构成。但是从计算机程序设计的角度看&#xff…

【计算机网络实验】TCP协议的抓包分析:三次握手四次挥手UDP和TCP的区别(超详细教程)

计算机网络实验——TCP协议抓包分析 文章目录 计算机网络实验——TCP协议抓包分析一、基础知识点1、运输层两个重要协议的特点对比&#xff08;TCP和UDP&#xff09;2、TCP报文的格式3、常见的TCP报文标识字段&#xff08;FLAG字段&#xff09;4、TCP连接的建立过程及理解——三…

RPC原理技术

RPC原理技术 背景介绍起源组件实现工作原理 背景 本文内容大多基于网上其他参考文章及资料整理后所得&#xff0c;并非原创&#xff0c;目的是为了需要时方便查看。 介绍 RPC&#xff0c;Remote Procedure Call&#xff0c;远程过程调用&#xff0c;允许像调用本地方法一样调…

LiveGBS流媒体平台GB/T28181用户手册-电子地图:视频标记在地图上播放、云台控制、语音对讲

LiveGBS流媒体平台GB/T28181用户手册-电子地图:视频标记在地图上播放、云台控制 1、电子地图1.1、播放1.2、云台控制对讲 2、搭建GB28181视频直播平台 1、电子地图 1.1、播放 1.2、云台控制对讲 点击 后&#xff0c;如果是球机就可以云台控制&#xff0c;支持对讲的摄像头&…

【openlayers系统学习】1.3交互-修改要素(features)

三、修改要素 Modifying features 修改要素 现在我们有一种方法可以让用户将数据加载到编辑器中&#xff0c;我们希望让他们编辑功能。为此&#xff0c;我们将使用 Modify​ 交互&#xff0c;将其配置为修改矢量源上的功能。 首先&#xff0c;在 main.js​ 中导入 Modify​ …

使用字节豆包大模型在 Dify 上实现最简单的 Agent 应用(四):AI 信息检索

这篇文章&#xff0c;我们继续聊聊&#xff0c;如何折腾 AI 应用&#xff0c;把不 AI 的东西&#xff0c;“AI 起来”。在不折腾复杂的系统和环境的前提下&#xff0c;快速完成轻量的 Agent 应用。 写在前面 在上一篇文章《使用 Dify、Meilisearch、零一万物模型实现最简单的…

Leetcode 876. 链表的中间结点

题目描述 给你单链表的头结点 head &#xff0c;请你找出并返回链表的中间结点。 如果有两个中间结点&#xff0c;则返回第二个中间结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[3,4,5] 解释&#xff1a;链表只有一个中间结点&#xff0c…

【关键字】——register在C语言中的使用

register——寄存器 了解register之前&#xff0c;应该先认识认识寄存器&#xff0c;何为寄存器&#xff1f; 在计算机中&#xff0c;数据可以存储在远程二级存储&#xff08;网盘&#xff0c;服务器&#xff09;&#xff0c;本地二级存储&#xff08;本地磁盘&#xff09;&am…

Linux多线程系列三: 生产者消费者模型,信号量使用,基于阻塞队列和环形队列的这两种生产者消费者代码的实现

Linux多线程系列三: 生产者消费者模型,信号量,基于阻塞队列和环形队列的这两种生产者消费者代码的实现 一.生产者消费者模型的理论1.现实生活中的生产者消费者模型2.多线程当中的生产者消费者模型3.理论 二.基于阻塞队列的生产者消费者模型的基础代码1.阻塞队列的介绍2.大致框架…

零基础小白撸空投攻略:空投流程是什么样的? 如何操作?

在Web3的世界中&#xff0c;空投&#xff08;Airdrop&#xff09;是一种常见的营销和推广策略&#xff0c;通过向特定用户群体免费分发代币&#xff0c;项目方希望能够吸引更多的用户和关注。对于许多刚刚接触加密货币和区块链的新手来说&#xff0c;都会疑惑空投的流程究竟是什…

CTFshow之文件上传web入门151关-161关解密。包教包会!!!!

这段时间一直在搞文件上传相关的知识&#xff0c;正好把ctf的题目做做写写给自字做个总结&#xff01; 不过有一个确定就是所有的测试全部是黑盒测试&#xff0c;无法从代码层面和大家解释&#xff0c;我找个时间把upload-labs靶场做一做给大家讲讲白盒的代码审计 一、实验准…

STM32自己从零开始实操02:输入部分原理图

一、触摸按键 1.1指路 项目需求&#xff1a; 4个触摸按键&#xff0c;主控芯片 TTP224N-BSBN&#xff08;嘉立创&#xff0c;封装 TSSOP-16&#xff09;&#xff0c;接入到 STM32 的 PE0&#xff0c;PE1&#xff0c;PE2&#xff0c;PE3。 1.2走路 1.2.1数据手册重要信息提…