Redis过期删除策略和内存淘汰策略有什么区别?

Redis过期删除策略和内存淘汰策略有什么区别?

  • 前言
  • 过期删除策略
    • 如何设置过期时间?
    • 如何判定 key 已过期了?
    • 过期删除策略有哪些?
    • Redis 过期删除策略是什么?
  • 内存淘汰策略
    • 如何设置 Redis 最大运行内存?
    • Redis 内存淘汰策略有哪些?
    • LRU 算法和 LFU 算法有什么区别?
  • 总结

前言

Redis 的「内存淘汰策略」和「过期删除策略」,很多小伙伴容易混淆,这两个机制虽然都是做删除的操作,但是触发的条件和使用的策略都是不同的。

今天就跟大家理一理,「内存淘汰策略」和「过期删除策略」。

话不多说,发车!

在这里插入图片描述

过期删除策略

Redis 是可以对 key 设置过期时间的,因此需要有相应的机制将已过期的键值对删除,而做这个工作的就是过期键值删除策略。

如何设置过期时间?

先说一下对 key 设置过期时间的命令。 设置 key 过期时间的命令一共有 4 个:

  • expire :设置 key 在 n 秒后过期,比如 expire key 100 表示设置 key 在 100 秒后过期;
  • pexpire :设置 key 在 n 毫秒后过期,比如 pexpire key2 100000 表示设置 key2 在 100000 毫秒(100 秒)后过期。
  • expireat :设置 key 在某个时间戳(精确到秒)之后过期,比如 expireat key3 1655654400 表示 key3 在时间戳 1655654400 后过期(精确到秒);
  • pexpireat :设置 key 在某个时间戳(精确到毫秒)之后过期,比如 pexpireat key4 1655654400000 表示 key4 在时间戳 1655654400000 后过期(精确到毫秒)

当然,在设置字符串时,也可以同时对 key 设置过期时间,共有 3 种命令:

  • set ex :设置键值对的时候,同时指定过期时间(精确到秒);
  • set px :设置键值对的时候,同时指定过期时间(精确到毫秒);
  • setex :设置键值对的时候,同时指定过期时间(精确到秒)。

如果你想查看某个 key 剩余的存活时间,可以使用 TTL 命令。

# 设置键值对的时候,同时指定过期时间位 60 秒
> setex key1 60 value1
OK

# 查看 key1 过期时间还剩多少
> ttl key1
(integer) 56
> ttl key1
(integer) 52

如果突然反悔,取消 key 的过期时间,则可以使用 PERSIST 命令。

# 取消 key1 的过期时间
> persist key1
(integer) 1

# 使用完 persist 命令之后,
# 查下 key1 的存活时间结果是 -1,表明 key1 永不过期 
> ttl key1 
(integer) -1

如何判定 key 已过期了?

每当我们对一个 key 设置了过期时间时,Redis 会把该 key 带上过期时间存储到一个过期字典(expires dict)中,也就是说「过期字典」保存了数据库中所有 key 的过期时间。

过期字典存储在 redisDb 结构中,如下:

typedef struct redisDb {
    dict *dict;    /* 数据库键空间,存放着所有的键值对 */
    dict *expires; /* 键的过期时间 */
    ....
} redisDb;

过期字典数据结构结构如下:

  • 过期字典的 key 是一个指针,指向某个键对象;
  • 过期字典的 value 是一个 long long 类型的整数,这个整数保存了 key 的过期时间;

过期字典的数据结构如下图所示:

在这里插入图片描述

字典实际上是哈希表,哈希表的最大好处就是让我们可以用 O(1) 的时间复杂度来快速查找。当我们查询一个 key 时,Redis 首先检查该 key 是否存在于过期字典中:

  • 如果不在,则正常读取键值;
  • 如果存在,则会获取该 key 的过期时间,然后与当前系统时间进行比对,如果比系统时间大,那就没有过期,否则判定该 key 已过期。

过期键判断流程如下图所示:

在这里插入图片描述

过期删除策略有哪些?

在说 Redis 过期删除策略之前,先跟大家介绍下,常见的三种过期删除策略:

  • 定时删除;
  • 惰性删除;
  • 定期删除;

接下来,分别分析它们的优缺点。

  1. 定时删除策略是怎么样的?

定时删除策略的做法是,在设置 key 的过期时间时,同时创建一个定时事件,当时间到达时,由事件处理器自动执行 key 的删除操作。

定时删除策略的优点:

可以保证过期 key 会被尽快删除,也就是内存可以被尽快地释放。因此,定时删除对内存是最友好的。
定时删除策略的缺点:

在过期 key 比较多的情况下,删除过期 key 可能会占用相当一部分 CPU 时间,在内存不紧张但 CPU 时间紧张的情况下,将 CPU 时间用于删除和当前任务无关的过期键上,无疑会对服务器的响应时间和吞吐量造成影响。所以,定时删除策略对 CPU 不友好。

  1. 惰性删除策略是怎么样的?

惰性删除策略的做法是,不主动删除过期键,每次从数据库访问 key 时,都检测 key 是否过期,如果过期则删除该 key。

惰性删除策略的优点:

因为每次访问时,才会检查 key 是否过期,所以此策略只会使用很少的系统资源,因此,惰性删除策略对 CPU 时间最友好。
惰性删除策略的缺点:

如果一个 key 已经过期,而这个 key 又仍然保留在数据库中,那么只要这个过期 key 一直没有被访问,它所占用的内存就不会释放,造成了一定的内存空间浪费。所以,惰性删除策略对内存不友好。

  1. 定期删除策略是怎么样的?

定期删除策略的做法是,每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key。

定期删除策略的优点:

通过限制删除操作执行的时长和频率,来减少删除操作对 CPU 的影响,同时也能删除一部分过期的数据减少了过期键对空间的无效占用。
定期删除策略的缺点:

内存清理方面没有定时删除效果好,同时没有惰性删除使用的系统资源少。
难以确定删除操作执行的时长和频率。如果执行的太频繁,定期删除策略变得和定时删除策略一样,对CPU不友好;如果执行的太少,那又和惰性删除一样了,过期 key 占用的内存不会及时得到释放。

Redis 过期删除策略是什么?

前面介绍了三种过期删除策略,每一种都有优缺点,仅使用某一个策略都不能满足实际需求。

所以, Redis 选择「惰性删除+定期删除」这两种策略配和使用,以求在合理使用 CPU 时间和避免内存浪费之间取得平衡。

  1. Redis 是怎么实现惰性删除的?

Redis 的惰性删除策略由 db.c 文件中的 expireIfNeeded 函数实现,代码如下:

int expireIfNeeded(redisDb *db, robj *key) {
    // 判断 key 是否过期
    if (!keyIsExpired(db,key)) return 0;
    ....
    /* 删除过期键 */
    ....
    // 如果 server.lazyfree_lazy_expire 为 1 表示异步删除,反之同步删除;
    return server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) :
                                         dbSyncDelete(db,key);
}

Redis 在访问或者修改 key 之前,都会调用 expireIfNeeded 函数对其进行检查,检查 key 是否过期:

如果过期,则删除该 key,至于选择异步删除,还是选择同步删除,根据 lazyfree_lazy_expire 参数配置决定(Redis 4.0版本开始提供参数),然后返回 null 客户端;
如果没有过期,不做任何处理,然后返回正常的键值对给客户端;
惰性删除的流程图如下:

在这里插入图片描述

  1. Redis 是怎么实现定期删除的?

再回忆一下,定期删除策略的做法:每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key。

  • 这个间隔检查的时间是多长呢?

在 Redis 中,默认每秒进行 10 次过期检查一次数据库,此配置可通过 Redis 的配置文件 redis.conf 进行配置,配置键为 hz 它的默认值是 hz 10。

特别强调下,每次检查数据库并不是遍历过期字典中的所有 key,而是从数据库中随机抽取一定数量的 key 进行过期检查。

  • 随机抽查的数量是多少呢?

我查了下源码,定期删除的实现在 expire.c 文件下的 activeExpireCycle 函数中,其中随机抽查的数量由 ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP 定义的,它是写死在代码中的,数值是 20。

也就是说,数据库每轮抽查时,会随机选择 20 个 key 判断是否过期。

接下来,详细说说 Redis 的定期删除的流程:

  1. 从过期字典中随机抽取 20 个 key;
  2. 检查这 20 个 key 是否过期,并删除已过期的 key;
  3. 如果本轮检查的已过期 key 的数量,超过 5 个(20/4),也就是「已过期 key 的数量」占比「随机抽取 key 的数量」大于 25%,则继续重复步骤 1;如果已过期的 key 比例小于 25%,则停止继续删除过期 key,然后等待下一轮再检查。

可以看到,定期删除是一个循环的流程。

那 Redis 为了保证定期删除不会出现循环过度,导致线程卡死现象,为此增加了定期删除循环流程的时间上限,默认不会超过 25ms。

针对定期删除的流程,我写了个伪代码:

do {
    //已过期的数量
    expired = 0//随机抽取的数量
    num = 20;
    while (num--) {
        //1. 从过期字典中随机抽取 1 个 key
        //2. 判断该 key 是否过期,如果已过期则进行删除,同时对 expired++
    }
    
    // 超过时间限制则退出
    if (timelimit_exit) return;

  /* 如果本轮检查的已过期 key 的数量,超过 25%,则继续随机抽查,否则退出本轮检查 */
} while (expired > 20/4); 

定期删除的流程如下:

在这里插入图片描述

内存淘汰策略

前面说的过期删除策略,是删除已过期的 key,而当 Redis 的运行内存已经超过 Redis 设置的最大内存之后,则会使用内存淘汰策略删除符合条件的 key,以此来保障 Redis 高效的运行。

如何设置 Redis 最大运行内存?

在配置文件 redis.conf 中,可以通过参数 maxmemory 来设定最大运行内存,只有在 Redis 的运行内存达到了我们设置的最大运行内存,才会触发内存淘汰策略。 不同位数的操作系统,maxmemory 的默认值是不同的:

在 64 位操作系统中,maxmemory 的默认值是 0,表示没有内存大小限制,那么不管用户存放多少数据到 Redis 中,Redis 也不会对可用内存进行检查,直到 Redis 实例因内存不足而崩溃也无作为。
在 32 位操作系统中,maxmemory 的默认值是 3G,因为 32 位的机器最大只支持 4GB 的内存,而系统本身就需要一定的内存资源来支持运行,所以 32 位操作系统限制最大 3 GB 的可用内存是非常合理的,这样可以避免因为内存不足而导致 Redis 实例崩溃。

Redis 内存淘汰策略有哪些?

Redis 内存淘汰策略共有八种,这八种策略大体分为「不进行数据淘汰」和「进行数据淘汰」两类策略。

  1. 不进行数据淘汰的策略

noeviction(Redis3.0之后,默认的内存淘汰策略) :它表示当运行内存超过最大设置内存时,不淘汰任何数据,这时如果有新的数据写入,会报错通知禁止写入,不淘汰任何数据,但是如果没用数据写入的话,只是单纯的查询或者删除操作的话,还是可以正常工作。

  1. 进行数据淘汰的策略

针对「进行数据淘汰」这一类策略,又可以细分为「在设置了过期时间的数据中进行淘汰」和「在所有数据范围内进行淘汰」这两类策略。

在设置了过期时间的数据中进行淘汰:

  • volatile-random:随机淘汰设置了过期时间的任意键值;
  • volatile-ttl:优先淘汰更早过期的键值。
  • volatile-lru(Redis3.0 之前,默认的内存淘汰策略):淘汰所有设置了过期时间的键值中,最久未使用的键值;
  • volatile-lfu(Redis 4.0 后新增的内存淘汰策略):淘汰所有设置了过期时间的键值中,最少使用的键值;

在所有数据范围内进行淘汰:

  • allkeys-random:随机淘汰任意键值;
  • allkeys-lru:淘汰整个键值中最久未使用的键值;
  • allkeys-lfu(Redis 4.0 后新增的内存淘汰策略):淘汰整个键值中最少使用的键值。

如何查看当前 Redis 使用的内存淘汰策略?

可以使用 config get maxmemory-policy 命令,来查看当前 Redis 的内存淘汰策略,命令如下:

127.0.0.1:6379> config get maxmemory-policy
1) "maxmemory-policy"
2) "noeviction"

可以看出,当前 Redis 使用的是 noeviction 类型的内存淘汰策略,它是 Redis 3.0 之后默认使用的内存淘汰策略,表示当运行内存超过最大设置内存时,不淘汰任何数据,但新增操作会报错。

如何修改 Redis 内存淘汰策略?

设置内存淘汰策略有两种方法:

  • 方式一:通过“config set maxmemory-policy <策略>”命令设置。它的优点是设置之后立即生效,不需要重启 Redis 服务,缺点是重启 Redis 之后,设置就会失效。
  • 方式二:通过修改 Redis 配置文件修改,设置“maxmemory-policy <策略>”,它的优点是重启 Redis 服务后配置不会丢失,缺点是必须重启 Redis 服务,设置才能生效。

LRU 算法和 LFU 算法有什么区别?

LFU 内存淘汰算法是 Redis 4.0 之后新增内存淘汰策略,那为什么要新增这个算法?那肯定是为了解决 LRU 算法的问题。

接下来,就看看这两个算法有什么区别?Redis 又是如何实现这两个算法的?

什么是 LRU 算法?

LRU 全称是 Least Recently Used 翻译为最近最少使用,会选择淘汰最近最少使用的数据。

传统 LRU 算法的实现是基于「链表」结构,链表中的元素按照操作顺序从前往后排列,最新操作的键会被移动到表头,当需要内存淘汰时,只需要删除链表尾部的元素即可,因为链表尾部的元素就代表最久未被使用的元素。

Redis 并没有使用这样的方式实现 LRU 算法,因为传统的 LRU 算法存在两个问题:

需要用链表管理所有的缓存数据,这会带来额外的空间开销;
当有数据被访问时,需要在链表上把该数据移动到头端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。

Redis 是如何实现 LRU 算法的?

Redis 实现的是一种近似 LRU 算法,目的是为了更好的节约内存,它的实现方式是在 Redis 的对象结构体中添加一个额外的字段,用于记录此数据的最后一次访问时间。

当 Redis 进行内存淘汰时,会使用随机采样的方式来淘汰数据,它是随机取 5 个值(此值可配置),然后淘汰最久没有使用的那个。

Redis 实现的 LRU 算法的优点:

不用为所有的数据维护一个大链表,节省了空间占用;
不用在每次数据访问时都移动链表项,提升了缓存的性能;
但是 LRU 算法有一个问题,无法解决缓存污染问题,比如应用一次读取了大量的数据,而这些数据只会被读取这一次,那么这些数据会留存在 Redis 缓存中很长一段时间,造成缓存污染。

因此,在 Redis 4.0 之后引入了 LFU 算法来解决这个问题。

什么是 LFU 算法?

LFU 全称是 Least Frequently Used 翻译为最近最不常用,LFU 算法是根据数据访问次数来淘汰数据的,它的核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。

所以, LFU 算法会记录每个数据的访问次数。当一个数据被再次访问时,就会增加该数据的访问次数。这样就解决了偶尔被访问一次之后,数据留存在缓存中很长一段时间的问题,相比于 LRU 算法也更合理一些。

Redis 是如何实现 LFU 算法的?

LFU 算法相比于 LRU 算法的实现,多记录了「数据的访问频次」的信息。Redis 对象的结构如下:

typedef struct redisObject {
    ...
      
    // 24 bits,用于记录对象的访问信息
    unsigned lru:24;  
    ...
} robj;

Redis 对象头中的 lru 字段,在 LRU 算法下和 LFU 算法下使用方式并不相同。

在 LRU 算法中,Redis 对象头的 24 bits 的 lru 字段是用来记录 key 的访问时间戳,因此在 LRU 模式下,Redis可以根据对象头中的 lru 字段记录的值,来比较最后一次 key 的访问时间长,从而淘汰最久未被使用的 key。

在 LFU 算法中,Redis对象头的 24 bits 的 lru 字段被分成两段来存储,高 16bit 存储 ldt(Last Decrement Time),低 8bit 存储 logc(Logistic Counter)。

在这里插入图片描述

  • ldt 是用来记录 key 的访问时间戳;
  • logc 是用来记录 key 的访问频次,它的值越小表示使用频率越低,越容易淘汰,每个新加入的 key 的logc 初始值为 5。

注意,logc 并不是单纯的访问次数,而是访问频次(访问频率),因为 logc 会随时间推移而衰减的。

在每次 key 被访问时,会先对 logc 做一个衰减操作,衰减的值跟前后访问时间的差距有关系,如果上一次访问的时间与这一次访问的时间差距很大,那么衰减的值就越大,这样实现的 LFU 算法是根据访问频率来淘汰数据的,而不只是访问次数。访问频率需要考虑 key 的访问是多长时间段内发生的。key 的先前访问距离当前时间越长,那么这个 key 的访问频率相应地也就会降低,这样被淘汰的概率也会更大。

对 logc 做完衰减操作后,就开始对 logc 进行增加操作,增加操作并不是单纯的 + 1,而是根据概率增加,如果 logc 越大的 key,它的 logc 就越难再增加。

所以,Redis 在访问 key 时,对于 logc 是这样变化的:

  1. 先按照上次访问距离当前的时长,来对 logc 进行衰减;
  2. 然后,再按照一定概率增加 logc 的值。

redis.conf 提供了两个配置项,用于调整 LFU 算法从而控制 logc 的增长和衰减:

  • lfu-decay-time 用于调整 logc 的衰减速度,它是一个以分钟为单位的数值,默认值为1,lfu-decay-time 值越大,衰减越慢;
  • lfu-log-factor 用于调整 logc 的增长速度,lfu-log-factor 值越大,logc 增长越慢。

总结

Redis 使用的过期删除策略是「惰性删除+定期删除」,删除的对象是已过期的 key。

在这里插入图片描述

内存淘汰策略是解决内存过大的问题,当 Redis 的运行内存超过最大运行内存时,就会触发内存淘汰策略,Redis 4.0 之后共实现了 8 种内存淘汰策略,我也对这 8 种的策略进行分类,如下:

在这里插入图片描述

完结,撒花🎉🎉

答应我,下次别再搞混了!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/628611.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电脑版的学浪课程下载方法

想在你的电脑上无限制地访问你最爱的学浪课程吗&#xff1f;现在&#xff0c;让我揭秘如何用几个简单步骤&#xff0c;轻松下载任何学浪课程到你的电脑&#xff0c;让学习不再受时间和地点的限制&#xff0c;随时随地都是你的课堂。 下载学浪视频的工具&#xff0c;我已经打包…

前端 JS 经典:数组去重万能方法

前言&#xff1a;只需要掌握这一个方法&#xff0c;就可以对有任何重复的数据数组&#xff0c;进行去重了。 可以自己思考下&#xff0c;怎么对以下对象数组去重&#xff1a; const arr [{ a: 1, b: 2 },{ b: 2, a: 1 },{ a: 1, b: 2, c: { a: 1, b: 2 } },{ b: 2, a: 1, c:…

数据中台管理系统原型

数据中台是一个通用性的基础平台&#xff0c;适用于各类行业场景&#xff0c;数据中台包含多元数据汇聚、数据标准化、数据开发、数据共享、数据智能、数据资产管理等功能&#xff0c;助力企业数字化转型。 数据汇聚 数据汇聚是将不同系统、不同类型的多元源数据汇聚至目标数据…

第二十届文博会中芬设计园分会场:发展新质生产力,释放文化创新活力

今年是中国&#xff08;深圳&#xff09;国际文化产业博览交易会&#xff08;以下简称“文博会”&#xff09;创办20周年&#xff0c;二十蝶变再启航&#xff0c;站在新的历史起点上&#xff0c;本届文博会将重点突出数字赋能、强化交易功能、激发和扩大文化消费、弘扬文化传承…

端午佳节,品尝食家巷传统面点与黄米粽子礼盒

端午佳节&#xff0c;品尝食家巷传统面点与黄米粽子礼盒 在这个端午节来临之际&#xff0c;食家巷倾情推出一款别具特色的端午礼盒&#xff0c;将甘肃的传统面点与地方特色黄米粽子完美融合&#xff0c;为您带来一场美味与传统的邂逅。 这款礼盒以甘肃传统面点一窝丝、油饼和烤…

立创EDA绘制PCB电路板

1、绘制好原理图后&#xff0c;点击设计---原理图转PCB&#xff0c;生成PCB文件 2、将元器件拖入电路板方框内&#xff0c;摆放布局并使用工具栏布线、放置过孔及丝印 3、然后顶层和底层铺铜 4、后面就可以生成制板文件发送嘉立创制板了。

干货教程【AI篇】| Topaz Video Enhance AI超好用的视频变清晰变流畅的AI工具,免费本地使用

关注文章底部公众号&#xff0c;回复关键词【tvea】即可获取Topaz Video Enhance AI。 一款非常好用的视频变清晰变流畅的AI工具&#xff0c;即提高视频的分辨率和FPS&#xff0c;亲测效果非常nice&#xff01;&#xff01; 免费&#xff01;免费&#xff01;免费&#xff01…

Google IO 2024有哪些看点呢?

有了 24 小时前 OpenAI 用 GPT-4o 带来的炸场之后&#xff0c;今年的 Google I/O 还未开始&#xff0c;似乎就被架在了一个相当尴尬的地位&#xff0c;即使每个人都知道 Google 将发布足够多的新 AI 内容&#xff0c;但有了 GPT-4o 的珠玉在前&#xff0c;即使是 Google 也不得…

笑铺日记:服装店看这3个数字,就知道赚不赚钱

明明店里每天人来人往&#xff0c;月底一算账&#xff0c;却发现没赚多少钱&#xff1f; 都说要数据分析&#xff0c;但是到底怎么做&#xff1f;这是每个老板都头疼不已的事情。 其实&#xff0c;服装店管好这3个数字&#xff0c;赚钱就不是事儿。 笑铺日记系统&#xff0c…

什么是等保测评?等保测评必须进行吗?

等保测评&#xff0c;全称为信息安全等级保护测评&#xff0c;是指对信息系统安全等级保护状况进行测试评估的活动。它是根据国家信息安全等级保护规范规定&#xff0c;由具有相应资质的测评机构&#xff0c;按照相关管理规范和技术标准进行的&#xff0c;目的是验证信息系统是…

深度学习技术之卷积神经网络

深度学习技术 卷积神经网络1. 导入需要的库2. 加载并显示两张图像2.1 加载图像2.2 创建子图2.3 打印图像形状2.4 打印合并后的图像数组的形状 3. 卷积层3.1 定义变量3.1.1 卷积核的大小&#xff08;u&#xff09;3.1.2 滑动步长&#xff08;s&#xff09;3.1.3 输出特征图的数量…

集成了Gemini的Android Studio,如虎添翼

今天将Android Studio升级到最新版&#xff08;Jellyfish&#xff09;。发现在new features中有一条&#xff1a; Code suggestions with Gemini in Android Studio 打开路径为&#xff1a; View > Tool Windows > Gemini 支持多国语言&#xff0c;英文、中文都能正确理解…

C++显式类型转换

本文主要分析C的4种显式类型转换 文章目录 static_cast基本数据类型转换const用于类层次结构void* dynamic_cast继承中的转换 const_castreinterpret_cast参考资料 我们使用显示类型转换&#xff0c;就是在告诉编译器要怎么解释这块内存。 在早期C/C中&#xff0c;显式的类型转…

Redis-分布式锁实现方式

文章目录 Redis分布式锁的作用&#xff1f;Redis分布式锁的底层原理实现&#xff1f;Redis分布式锁的应用场景&#xff1f;Redis分布式锁遇到相关的场景问题&#xff1f;死锁问题锁超时问题归一问题可重入问题阻塞与非阻塞问题公平锁&#xff08;Fair Lock)公平锁&#xff08;F…

【数据库02】优化、视图、触发器、锁、InnoDB引擎、事务高级

个人学习笔记记录 参考资料&#xff1a;数据库从入门到精通 &#x1f600;SQL优化 &#x1f3b6;insert 主键优化 主键顺序插入的性能是要高于乱序插入的 InnoDB的逻辑结构图 数据行是记录在page中的&#xff0c;而每一个页的大小是固定的&#xff0c;默认16K。 那也就意味…

Franz Electron + React 源码启动运行填坑指南

环境要求 安装miniconda python 环境electron/rebuild用得着&#xff0c;miniconda 默认自带的 python 是 3.11 版本&#xff0c;比较新&#xff1b; 安装virsual studio 2019 要把C桌面相关的都安装了&#xff0c;大概需要20G&#xff0c;不要安装到 C 盘&#xff0c;都安装到…

防静电托盘的用途和性能

防静电托盘主要的用途就是将静电消除&#xff0c;比较广泛的使用在电子的器件以及其在生产的过程中&#xff0c;需要进行转载的周转、运输、贮存和包装等&#xff0c;在行业中我们还可以称之为导静电的托盘&#xff0c;正常情况下防静电托盘的高度为100mm以下&#xff0c;比较适…

一招教你学浪app视频如何下载到本地

在这个知识爆炸的时代&#xff0c;学习从未如此便捷&#xff0c;而今天&#xff0c;我要分享的这个小秘密&#xff0c;将彻底改变你获取知识的方式&#xff1a;一招教你如何将学浪课程轻松下载到本地&#xff0c;让精彩的学习内容随时随地触手可及&#xff0c;开启你的随身学习…

用Div标签替换ul和li标签

使用 <div> 标签可以替换 <ul> 和 <li> 标签的功能&#xff0c;从而创建类似于列表的结构。下面是一个简单的示例&#xff0c;演示如何使用 <div> 标签替换 <ul> 和 <li> 标签&#xff1a;下面是我整理的接种解决方案&#xff0c;可以一起…

vue(九) 生命周期 v3.0和v2.0对比,父子组件生命周期的执行顺序

文章目录 生命周期vue2.0生命周期1.图示2.生命周期解释说明3.代码示例 vue3.0生命周期1.图示2.生命周期解释说明3.代码示例 父子组件中生命周期执行顺序v.3和v2.0生命周期对比 生命周期 每个 Vue 组件实例在创建时都需要经历一系列的初始化步骤&#xff0c;比如设置好数据侦听…