PLL-分频器

概念

分频器的性能一般用四个参数来规定:(1)分频比,(2)最大允许输入频率fmax,(3)功耗,(4)最小允许输入电压摆幅(也叫“灵敏度”)。虽然分频器的相位噪声也很重要,但在大多数情况下它可以忽略不计。

把一般分频器的输入灵敏度画成输入频率的函数。我们期望更高的频率需要更大的输入波动。其中灵敏度Vp是输入频率的函数。该图上的每个点代表一个fmax对应于某一输入摆幅。当f > f1时,无论摆幅有多大,电路都会失效。当输入为零时,一些分频环可以作为振荡器,表现出如右图的行为。在这种情况下,电路在fosc处振荡,输入幅度为零。

大多数分压器在轨对轨输入波动时运行,如果这些波动下降超过10%,就会接近故障。在某些情况下,即使频率远低于f1,也会发生故障。必须区分两种类型的故障,“静态”或“动态”。前者即使在低频时也会发生,表明电压波动不足、跨导或直流电压增益不足。后者是由阶段的有限延迟引起的。因此,在高速下发生故障的分频器必须首先在较低频率下进行测试,以确保适当的静态条件。例如,针对输入频率为10ghz的分频器首先在几GHz测试以检查其静态行为。如果输入边缘不够锐利,分频器也可能在非常低的频率下失效。此外,必须仔细设计压控振荡器和分压器之间的接口。

假设LC振荡器的振荡摆幅只有0.5Vpp(为了降低闪烁噪声),如何驱动需要轨对轨摆动的分频器?

VX和VY在半个周期内低于零。也就是说,即使他们的波动高达1vpp,也不能直接驱动分频器(幅度为-VDD/2-VDD/2,需要将波动改成0-VDD才能驱动分频器)。

可以在VCO和分压器之间插入电容耦合、自偏置逆变器。由于其电压增益,逆变器提供轨道到轨道的摆动。耦合电容的选择大约是逆变器输入电容的5到10倍,反馈电阻必须远大于逆变器的输出电阻此外,该网络的高通角频率必须选择远低于最小输入频率。

当频率较大时,自偏置逆变器的小信号输入电阻近似等于1/(gmN + gmP)。这个电阻在一定程度上降低了振荡器Q。

该电路一个问题是电源噪声:该噪声会调制逆变器的延迟,从而在振荡器信号中增加相位噪声。出于这个原因,逆变器(和VCO)通常由片上低噪声稳压器(例如LDO)提供。

锁存器类型

感兴趣的是最大速度、功耗和时钟晶体管数量(以及输入端呈现的负载)等参数。

静态

D锁存器

一些分频器必须在低频可靠地工作。对于低于100 MHz的操作,我们更喜欢静态锁存器,因为它们不容易由于晶体管的亚阈值和结漏而发生故障。至于上限,静态锁存器在当今的CMOS技术中可以达到5到10 GHz的速度。

当CK高时,Din被传输,当CK低时,它的值被存储。单端拓扑结构由8个晶体管组成,每个时钟相位各有2个晶体管。注意,当电路从感测模式切换到锁存模式时,时钟转换时间必须足够短,以最小化Din和DF之间的冲突。

互补输入D锁存器

具有互补数据输入和输出的D锁存器。CK变高时,M1或M2导通,覆盖之前由两个逆变器保持的状态。当CK变低时,新状态无限期保留。采用七个晶体管,只有一个时钟器件,这种拓扑结构往往比上一个锁存器的更有效。然而,设计需要适当的器件比例。如右图,为了使输入数据覆盖之前的状态,MCK和M1(或M2)的串联组合必须足够强,以克服其中一个逆变器的PMOS晶体管。即使在SF角的过程中也必须满足这个条件。因此,我们选择M1,2和MCK至少与PMOS器件一样宽。

实现“与”功能的锁存器

在一侧插入一个NMOS NAND分支,在另一侧插入一个NMOS NOR分支。请注意,与分支使左侧更弱,除非它包含更宽的晶体管。

上面的拓扑中,状态通过两个背靠背的逆变器或背靠背的“逆变放大器”来存储。这是静态锁存器的一个特征:当时钟器件失活时,该状态由通往地或VDD的低阻抗路径保持。

CML

第三个静态锁存器结合了电流转向和非轨对轨输入和输出摆动。这种结构被称为“电流模式逻辑”(CML)拓扑,它吸收静态功率,仅在非常高的频率下使用。在感测模式下,CK高,M5导通,M6关断,电路简化为图(b)。因此,输入被M1和M2放大,并在节点X和Y上留下印象。接下来,CK变低,M5关断,M6导通,再生对M3-M4继承、放大并存储差分电压VX−VY[图(c)]。将这一对及其负载电阻视为两个背靠背反相(共源)放大器。如果晶体管完全开关,则单端电压摆幅=RDISS。

CML电路的速度优势源于两个特性:(a)使用适度的电压波动,例如ISSRD≈300-400 mV,因此转换可以更快地发生;(b)在数据和时钟路径中仅使用NMOS器件。然而,静态功率损失限制了它们的使用,只有在其他宽带分频器拓扑失败的情况下。

τreg = RDCD/(gm3,4RD−1)为再生时间常数。指数增长是由正反馈引起的,更根本的是由电路在右半平面的极点引起的。如图(e)所示,VXY遵循下式,直到电路进入大信号状态,一个晶体管的跨导下降,尾电流完全转向一侧。只有当τreg > 0,即当gm3,4RD > 1时,指数放大才会发生。

单端电压摆幅IDRD通常选择在300至400 mV左右。然而,M1-M2和M3-M4对叠加在M5-M6对之上,使得CML锁存器无法低压工作。作为补救措施,我们移除尾部电流源,并通过电流反射镜布置使时钟晶体管偏置。偏置电流由IREF定义,耦合电容器将M5和M6的栅极偏置与CK共模电平隔离开来。电阻器和电容值足够大,可以产生远低于时钟频率的高通角频率。

可以选择C1和C2的值为M5和M6栅极处电容的5到10倍,以便尽量减少时钟波动的衰减。但是,如果时钟摆动是轨道到轨道的,我们可以允许一些衰减,例如,对达到A和B的振幅进行2或3倍的衰减,因为M5和M6可以以适度的摆动工作。事实上,避免A和B的轨对轨振荡是可取的,这样M5和M6就可以在饱和状态下工作,而电路对M1和M2保持一定的共模抑制。为了理解这一点,假设VA上升到VDD,从而驱动M5进入深三极管区域。然后,流过M1和M2的电流对其栅极处的CM电平有很强的依赖性。在这种情况下,电路(通过数据路径)的CM增益可能超过1,在锁存器级联中引起显著的CM误差。

由于其有限的输入波动,CML锁存器不能轻易地使用NAND门。互补输入D锁存器所示的NAND原理在这里失败了,因为只有适度的输入波动才能关闭M1和M±1。下图显示了一个包含适当NAND操作的CML锁存器,其中只有当A和B在感测模式下都高时,VX才会低。该电路需要对B输入进行直流电平移,以确保M1和M2不进入三极管区域。这种结构在低压设计中很少使用。

CML锁存器可以包含OR门,如图所示,其中M1和M1'可以在X处施加低电平,在Y处施加高电平。在这种情况下,M2简单地由恒定偏置电压Vb驱动,该恒定偏置电压=A和B的共模电平。输入的单端特性使得该电路的鲁棒性比全差分CML拓扑略低,需要密切关注输入。具体而言,A和B电压摆动以及M1和M1'的宽度必须足够大,以确保尾电流的完全转向。此外,如图右图所示,R1和I1以生成Vb以跟踪A和B的CM水平。例如,如果前级的平均尾电流为ISS,负载电阻为RD,则其输出CM电平等于VDD−RDISS/2,要R1I1=RDISS/2。
CML电路消耗静态功率,只有当所需的速度太高以至于其他拓扑无法满足时才应使用。在本节研究的三个静态锁存器中,前两个不消耗静态功率但速度有限,而CML拓扑可以在非常高的频率下运行并消耗高功率。另一方面,动态锁存器通常比前两种拓扑运行得更快。

动态

在动态锁存器中,状态存储在器件电容上,而不是通过背靠背的放大级。这种锁存器比静态锁存器包含更少的晶体管,并且通常提供更有利的速度-功率权衡。但是,由于器件泄漏,如果时钟频率不够高,它们可能会失去其状态。也就是说,动态锁存器对工作频率施加了一个下限。

Clocked CMOS

时钟CMOS”(c2mos)动态锁存器。当CK高时,

该电路充当逆变器,感应输入。当CK变低时,P和N支路被禁用,状态存储在输出电容上。与前一节研究的静态结构相比,这一阶段只需要四个晶体管,没有正常工作所需的电流率。

使用C^{2}MOS构建二分频器,这个分压器能跑多快?对于给定的输入频率fin,我们要求环路支持频率为fin/2的波形。如果粗略地将电路视为三个逆变器,是一个环形振荡器,可以估计最大输出频率约为1/(6TD),其中TD表示各级的平均延迟。我们认为电路的自振荡频率为1/(6TD)。此时,fin≈2/(6TD) = 1/(3TD),(逆变器内的时钟晶体管增加了它们的延迟)。我们甚至可以说这个电路是一个对输入时钟“注入锁定”的三级环形振荡器。注意,这个÷2电路不提供正交输出。

c2mos锁存器的主要缺点是它们在时钟转换期间的“透明性”。为了理解这一点,考虑图中具有真实时钟波形的主从FF。当CK上升到将从机置于存储模式而将主机置于感知模式时,这两个阶段在一段时间内变得透明。因此,D可以改变B,从而改变Q。存储在Q处的寄生电容上,如果D的新值与Q不一致,则由于这种“馈通”,输出状态会大幅降低。作为保守措施,两个锁存器应该由不重叠的时钟相位驱动:即两个不重叠的时钟及其互补。但对于分频器实现,快速时钟转换就足够了。

True单相时钟

避免使用互补时钟,真单相时钟电路比c2mos表现出更高的速度和更低的功耗。

含非与门

不想写了。。。。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/626831.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AI实景自动无人直播软件:引领直播新时代的智能化创作工具,实现一部手机24小时直播拓客

在科技飞速发展的今天,AI实景自动无人直播软件以其独特的功能和便捷性,正成为商家和内容创作者们的利器。这款先进的软件支持智能讲解、一键开播、智能回复以及手机拍摄真实场景等特性,为用户呈现了全新的直播体验,引领着直播行业…

K8s 二进制部署 上篇

一 K8S按装部署方式: ① Minikube Minikube是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习、预览K8S的一些特 性使用。 部署地址:https://kubernetes.io/docs/setup/minikube ② Kubeadmin Kubeadmin也是一个工…

目标检测算法YOLOv6简介

YOLOv6由Chuyi Li等人于2022年提出,论文名为:《YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications》,论文见:https://arxiv.org/pdf/2209.02976 ,项目网页:https://github.c…

深度学习设计模式之简单工厂模式

文章目录 前言一、简单工厂设计模式的作用?二、详细分析1.核心组成2.实现步骤3.示例代码4.优缺点优点缺点 5.使用场景 总结 前言 本文主要学习简单工厂设计模式,这个设计模式主要是将创建复杂对象的操作单独放到一个类中,这个类就是工厂类&a…

详述进程的地址空间

进程的地址空间 合法的地址 (可读或可写) 代码 (main, %rip 会从此处取出待执行的指令),只读数据 (static int x),读写堆栈 (int y),读写运行时分配的内存 (???),读写动态链接库 (???) 非法的地址 NULL,导致 se…

Gooxi发布最新AI服务器:加速生成式AI落地 更懂AI

近日,Gooxi发布最新训推一体AI服务器,以大容量内存和灵活的高速互连选项满足各种AI应用场景,最大可能支持扩展插槽,从而大幅提升智能算力性能,以最优的性能和成本为企业的模型训练推理落地应用提供更好的通用算力。 AI…

FSMC的NOR Flash/PSRAM 控制器功能介绍(STM32F4)

目录 概述 1 FSMC支持的类型 1.1 信号类型概述 1.2 FSMC的应用 2 外部存储器接口信号 2.1 I/O NOR Flash 2.2 PSRAM/SRAM 3 支持的存储器和事务 4 通用时序规则 5 NOR Flash/PSRAM 控制器异步事务 5.1 模式 1 - SRAM/PSRAM (CRAM) 5.2 模式 A - SRAM/PSRAM (CRAM…

GPU Burn测试指导

工具下载链接: https://codeload.github.com/wilicc/gpu-burn/zip/master测试方法: 上传工具到操作系统下,解压缩工具,使用make命令完成编译(确保cuda环境变量已经配置成功、 nvcc -v能显示结果)。 如果安…

图扑智慧农业——生态鱼塘数字孪生监控

智慧农业园作为新型农业经营模式,正在以其高效、环保、可持续的特点受到广泛关注。智慧鱼塘作为智慧农业中一项关键技术,结合物联网、人工智能、云计算等技术,实现对新型养殖模式的实时监控、优化与管理。 效果展示 图扑软件应用自研 HT for…

CVE-2024-4761 Chrome 的 JavaScript 引擎 V8 中的“越界写入”缺陷

分析 CVE-2024-4761 和 POC 代码 CVE-2024-4761 描述 CVE-2024-4761 是一个在 V8 引擎中发现的越界写漏洞,报告日期为 2024-05-09。这个漏洞可能允许攻击者通过特制的代码执行任意代码或者造成内存破坏,进而导致程序崩溃或其他不安全行为。 POC 代码解…

群辉部署小雅alist实现视听盛会

最近群辉搭建起来了,开始整蛊影视库,之前搞过nastool。这次折腾下小雅alist。 1.下载并安装 直接在群辉的docker里面下载映像 主要映射下端口和文件夹 #token mytoken.txt 获取地址:https://alist.nn.ci/zh/guide/drivers/aliyundriv…

IBM Granite模型开源:推动软件开发领域的革新浪潮

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

01基础篇

1、初识 JVM 1.1 什么是 JVM JVM 全称是 Java Virtual Machine,中文译名 Java虚拟机。JVM 本质上是一个运行在计算机上的程序,他的职责是运行Java字节码文件。 Java源代码执行流程如下: 分为三个步骤: 编写Java源代码文件。使用…

【Linux】线程机制解析:理解、优势与Linux系统应用

文章目录 前言:1. 线程概念1.1. 什么是线程1.2. 线程得优点:1.3. 线程的缺点线程异常线程的用途 2. 线程的理解(Linux 系统为例)2.1. 为什么要设计Linux“线程"?2.2. 什么是进程?2.3. 关于调度的问题2…

基于EBAZ4205矿板的图像处理:11阈值系数可调的图像局部阈值二值化

基于EBAZ4205矿板的图像处理:11阈值系数可调的图像局部阈值二值化 没写完,局部阈值二值化算法本身和算法的fpga部署思路没有讲,有空时补充 先看效果 还是一样拿我的pynq当模特,然后用usb——HDMI采集卡把输出图像采集到电脑上。…

每日一题12:Pandas:数据重塑-融合

一、每日一题 解答: import pandas as pddef meltTable(report: pd.DataFrame) -> pd.DataFrame:reshaped_report report.melt(id_varsproduct, var_namequarter, value_namesales)return reshaped_report 题源:Leetcode 二、总结 melt()函数是Pa…

为什么需要使用SOCKS5代理?

SOCKS代表Socket Secure,是一种网络协议,能够在网络上进行数据传输。SOCKS5是SOCKS协议的第五个版本,它提供了更加安全和灵活的数据传输方式,因此在网络安全和隐私保护方面被广泛应用。在我们的日常生活中,为什么需要使…

2024年5月13号刷题相关事项个人总结

01.01.03 LeetCode 入门及攻略(第 01 ~ 02 天) 1. LeetCode 是什么 「LeetCode」 是一个代码在线评测平台(Online Judge),包含了 算法、数据库、Shell、多线程 等不同分类的题目,其中以算法题目为主。我们…

jar包安装成Windows服务

一、前言 很多年前写过一篇《使用java service wrapper把windows flume做成服务》的文章,也是把jar包安装成windows服务,今天介绍另外一种更简便的方案。 二、正片 这次使用的工具是 winsw,一个Windows服务包装器。下面看详细介绍 首先从g…

开源禅道zentao的使用

很不幸禅道因为漏洞被人进攻了,被迫研究。 1.安装 直接使用docker进行部署,这里有非常多门道。官网的镜像easysoft-zentao是属于docker安装,而idoop的镜像虽然也是docker安装,但是实际是使用官网linux一键安装的版本&#xff0c…