JavaScript异步编程——10-async异步函数【万字长文,感谢支持】

异步函数(用 async 声明的函数)

异步函数的定义

使用async关键字声明的函数,称之为异步函数。在普通函数前面加上 async 关键字,就成了异步函数。语法举例:

 // 写法1:函数声明的写法
 async function foo1() {
 }
 ​
 // 写法2:表达式写法(ES5语法)
 const foo2 = async function () {
 }
 ​
 // 写法3:表达式写法(ES6箭头函数语法)
 const foo3 = async () => {
 }
 ​
 // 写法4:定义一个类,在类中添加一个异步函数
 class Person {
   async foo4() {
   }
 }

JS中的“异步函数”是一个专有名词,特指用async关键字声明的函数,其他函数则称之为普通函数。如果你在一个普通函数中定义了一个异步任务,那并不叫异步函数,而是叫包含异步任务的普通函数。

async (异步的)这个单词是 asynchronous 的缩写;相反,sync(同步的)这单词是 synchronous 的缩写。

上面的异步函数代码,执行顺序与普通函数相同,默认情况下会同步执行。如果想要发挥异步执行的作用,则需要配合 await 关键字使用。稍后我们再讲 async/await的语法。

异步函数的返回值

异步函数的返回值和普通函数差别比较大,需要特别关注。

普通函数的返回值,默认是 undefined;也可以手动 return 一个返回值,那就以手动 return的值为准。

异步函数的返回值永远是 Promise 对象。至于这个 Promise 后续会进入什么状态,那就要看情况了。主要有以下几种情况:

  • 情况1:如果异步函数内部返回的是普通值(包括 return undefined时)或者普通对象,那么Promise 的状态为fulfilled。这个值会作为then()回调的参数。

  • 情况2:如果异步函数内部返回的是另外一个新的 Promise,那么 Promise 的状态将交给新的 Promise 决定

  • 情况3:如果异步函数内部返回的是一个对象,并且这个对象里有实现then()方法(这种对象称为 thenable 对象),那就会执行该then()方法,并且根据then()方法的结果来决定Promise的状态

另外还有一种特殊情况:

  • 情况4:如果异步函数内部在执行时遇到异常或者手动抛出异常时,那么, Promise 处于rejected 状态。

上面这四种情况似曾相识,我们在前面学习“resolve() 传入的参数”、“then()方法的返回值”知识点时,都有类似的情况,知识都是相通的。

默认返回值

代码举例:

 async function foo2() {
   // 相当于 return undefined,也相当于 return Promise.resolve(undefined)
 };
 ​
 async function foo3() {
   Promise.resolve('qianguyihao');
   // 相当于 return undefined,也相当于 return Promise.resolve(undefined)
 };
 ​
 // foo2()、foo3()都是一个Promise对象
 foo2().then(res => {
   console.log(res); // 打印结果:undefined
 })
 ​
 foo3().then(res => {
   console.log(res); // 打印结果:undefined
 })

代码解释:异步函数即便没有手动写返回值,也相当于 return Promise.resolve(undefined)

返回普通值

比如下面这段代码:

 async function foo() {
   return 'qianguyihao'
 };

image-20230608114346235

可以看到,foo() 的返回值是Promise对象,不是字符串。上面的代码等价于下面这段代码:

 async function foo() {
   return Promise.resolve('qianguyihao');
 };

进而,我们可以通过 Promise 对象的then()方法。代码举例如下。

举例1:(异步函数中手动 return 一个值)

 async function foo() {
   return 'qianguyihao';
   // 上面这行代码相当于:return Promise.resolve('qianguyihao');
 };
 ​
 // foo() 是一个Promise对象
 foo().then(res => {
   console.log(res); // 打印结果:qianguyihao
 })

async/await 的使用

异步函数配合 await 关键字使用

我们可以在async声明的异步函数中,使用 await关键字来暂停函数的执行,等待一个异步操作完成。温馨提示:await 关键字不能在普通函数中使用,只能在异步函数中使用。

在等待异步操作期间,异步函数会暂停执行,并让出线程,使其他代码可以继续执行。一旦异步操作完成,该异步函数会恢复执行,并返回一个 Promise 对象。具体解释如下:

(1)await的后面是一个表达式,这个表达式要求是一个 Promise 对象(通常是一个封装了异步任务的Promise对象)。await执行完成后可以得到异步结果。

(2)await 会等到当前 Promise 的状态变为 fulfilled之后,才继续往下执行异步函数。

  • async 的返回值是 Promise 对象。

本质是语法糖

async/await 是在 ES8(即ES 2017)中引入的新语法,是另外一种异步编程解决方案。

async/await 本质是 生成器 Generator 的语法糖,是对Generator的封装。什么是语法糖呢?语法糖就是让语法变得更加简洁、更加舒服,有一种甜甜的感觉。

async/await 的写法使得编写异步代码更加直观和易于管理,避免了使用回调函数或Promise链的复杂性。认识到这一点,非常重要。

Promise、Generator、async/await的对比

我们在使用 Promise、async/await、Generator 的时候,返回的都是 Promise 的实例。

如果直接使用 Promise,则需要通过 then 来进行链式调用;如果使用 async/await、Generator,写起来更像同步的代码。

接下来,我们看看 async/await 的代码是怎么写的。

async/await 的基本用法

async 后面可以跟一个 Promise 实例对象。代码举例如下:

 const request1 = function () {
   const promise = new Promise((resolve, reject) => {
     requestAjax('https://www.baidu.com/xxx_url', (res) => {
       if (res.retCode == 200) {
         // 这里的 res 是接口1的返回结果
         resolve('request1 success' + res);
       } else {
         reject('接口请求失败');
       }
     });
   });
 ​
   return promise;
 };
 ​
 async function requestData() {
   // 关键代码
   const res = await request1();
   return res;
 }
 requestData().then(res => {
   console.log(res);
 });

用 async/await 封装Promise链式调用【重要】

假设现在有三个网络请求,请求2必须依赖请求1的结果,请求3必须依赖请求2的结果,如果按照ES5的写法,会有三层回调,会陷入“回调地狱”。

这种场景其实就是接口的多层嵌套调用。之前学过 Promise,它可以把原本的多层嵌套调用改进为链式调用

而本文要学习的 async/await ,可以把原本的“多层嵌套调用”改成类似于同步的写法,非常优雅。

代码举例:

 // 【公共方法层】封装 ajax 请求的伪代码。传入请求地址、请求参数,以及回调函数 success 和 fail。
 function requestAjax(url, params, success, fail) {
   var xhr = new xhrRequest();
   // 设置请求方法、请求地址。请求地址的格式一般是:'https://api.example.com/data?' + 'key1=value1&key2=value2'
   xhr.open('GET', url);
   // 设置请求头(如果需要)
   xhr.setRequestHeader('Content-Type', 'application/json');
   xhr.send();
   xhr.onreadystatechange = function () {
     if (xhr.readyState === 4 && xhr.status === 200) {
       success && success(xhr.responseText);
     } else {
       fail && fail(new Error('接口请求失败'));
     }
   };
 }
 ​
 // 【model层】将接口请求封装为 Promise
 function requestData1(params_1) {
   return new Promise((resolve, reject) => {
     requestAjax('https://api.qianguyihao.com/url_1', params_1, res => {
       // 这里的 res 是接口返回的数据。返回码 retCode 为 0 代表接口请求成功。
       if (res.retCode == 0) {
         // 接口请求成功时调用
         resolve('request success' + res);
       } else {
         // 接口请求异常时调用
         reject({ retCode: -1, msg: 'network error' });
       }
     });
   });
 }
 ​
 ​
 // requestData2、requestData3的写法与 requestData1类似。他们的请求地址、请求参数、接口返回结果不同,所以需要挨个单独封装 Promise。
 function requestData2(params_2) {
   return new Promise((resolve, reject) => {
     requestAjax('https://api.qianguyihao.com/url_2', params_2, res => {
       if (res.retCode == 0) {
         resolve('request success' + res);
       } else {
         reject({ retCode: -1, msg: 'network error' });
       }
     });
   });
 }
 ​
 function requestData3(params_3) {
   return new Promise((resolve, reject) => {
     requestAjax('https://api.qianguyihao.com/url_3', params_3, res => {
       if (res.retCode == 0) {
         resolve('request success' + res);
       } else {
         reject({ retCode: -1, msg: 'network error' });
       }
     });
   });
 }
 ​
 // 封装:用 async ... await 调用 Promise 链式请求
 async function getData() {
   // 【关键代码】
   const res1 = await requestData1(params_1);
   const res2 = await requestData2(res1);
   const res3 = await requestData3(res2);
 }
 ​
 getData();

上面这段代码比较长,我们在上一章学习《Promise的链式调用》时,已经详细讲过了。

await 后面也可以跟一个异步函数

前面讲到,await后面通常是一个执行异步任务的Promise对象。由于异步函数的返回值本身就是一个Promise,所以,我们也可以在await 后面也可以跟一个异步函数。

代码举例:

 const request1 = function () {
   return new Promise((resolve, reject) => {
     resolve('request1 请求成功');
   });
 };
 ​
 async function request2() {
   const res = await request1();
   return res;
 }
 ​
 async function request3() {
   // 【关键代码】request2() 既是一个异步函数,同样也是一个 Promise,所以可以跟在 await 的后面
   const res = await request2();
   console.log('res:', res);
 }
 ​
 request3();

异步函数的异常处理

前面讲过,如果异步函数内部在执行时遇到异常或者手动抛出异常时,那么, 这个异步函数返回的Promise 处于rejected 状态。

捕获并处理异步函数的异常时,有两种方式:

  • 方式1:通过 Promise的catch()方法捕获异常。

  • 方式2:通过 try catch捕获异常。

在处理异步函数的异常情况时,方式2更为常见。

如果我们不捕获异常,则会往上层层传递,最终传递给浏览器,浏览器会在控制台报错。

方式1:过 Promise的catch()方法捕获异常

function requestData1() {
  return new Promise((resolve, reject) => {
    reject('任务1失败');
  })
}

function requestData2() {
  return new Promise((resolve, reject) => {
    resolve('任务2成功');
  })
}

async function getData() {
  // requestData1 在执行时,遇到异常
  await requestData1();
  /*
  由于上面的代码在执行是遇到异常,所以,这里虽然什么都没写,底层默认写了如下代码:
  return Promise.reject('任务1失败');
  */

  // 下面这行代码不会再走了
  await requestData2();
}

// getData() 这个异步函数的返回值是一个 Promise,状态为 rejected,所以会走到 catch()
getData().then(res => {
  console.log(res);
}).catch(err => {
  console.log('err:', err);
});

打印结果:

err: 任务1失败

方式2:通过 try catch 捕获异常

如果你觉得上面的写法比较麻烦,还可以通过 try catch 捕获异常。

代码举例:

function requestData1() {
  return new Promise((resolve, reject) => {
    reject('任务1失败');
  })
}

function requestData2() {
  return new Promise((resolve, reject) => {
    resolve('任务2成功');
  })
}

async function getData() {
  try {
    // requestData1 在执行时,遇到异常
    await requestData1();
    /*
    由于上面的代码在执行是遇到异常,当前任务立即终止,所以,这里虽然什么都没写,底层默认写了如下代码:
    return Promise.reject('任务1失败');
    */

    // 下面这两代码不会再走了
    console.log('qianguyihao1');
    await requestData2();
  }
  catch (err) {
    // 捕获异常代码
    console.log('err:', err);
  }
}

getData();
console.log('qianguyihao2');

打印结果:

qianguyihao2
err1: 任务1失败

总结

在 async 函数中,不是所有的 异步任务都需要 await。如果两个任务在业务上没有依赖关系,则不需要 await;也就是说,可以并发执行,不需要线性执行,避免无用的等待。

参考链接

  • js async await 终极异步解决方案

  • 理解 JavaScript 的 async/await

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/626760.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于SVPWM的飞轮控制系统的simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于SVPWM的飞轮控制系统的simulink建模与仿真。SVPWM的核心思想是将逆变器输出的三相电压矢量在两相静止坐标系(αβ坐标系)中表示,通过控…

基于EKF扩展卡尔曼滤波的一阶环形倒立摆控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于EKF扩展卡尔曼滤波的一阶环形倒立摆控制系统simulink建模与仿真。基于扩展卡尔曼滤波(Extended Kalman Filter, EKF)的一阶环形倒立摆控制系统&…

常类API(Math,System,Runtime)

1、Math 是帮助我们用于进行数学计算的工具类私有化构造方法,所有的方法都是静态的 方法名 说明public static int abs(int a) 获取参数绝对值 public static double ceil(int a)向上取整public static double floor(int a)向下取…

算法分析与设计复习__渐近+复杂度

算法v.s.程序: 程序 数据结构 算法; 1.时空复杂度T(n)/O(n)(衡量一个算法的优劣) 1.1最坏/最好/平均(所有输入等概出现)时间复杂度; 1.1.1 E.g.手算某算法(冒泡排序)程序段的T,O; 1.2算法的渐近表示; …

C++|多态性与虚函数(2)|虚析构函数|重载函数|纯虚函数|抽象类

前言 看这篇之前,可以先看多态性与虚函数(1)⬇️ C|多态性与虚函数(1)功能绑定|向上转换类型|虚函数-CSDN博客https://blog.csdn.net/weixin_74197067/article/details/138861418?spm1001.2014.3001.5501这篇文章会…

Selenium 自动化 —— 四种等待(wait)机制

更多关于Selenium的知识请访问CSND论坛“兰亭序咖啡”的专栏:专栏《Selenium 从入门到精通》 ​ 目录 目录 需要等待的场景 自己实现等待逻辑 Selenium 提供的三种等待机制 隐式等待(Implicit Waits) 隐式等待的优点 隐式等待的缺点 …

【保姆级介绍自动化的讲解】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

mysql根据字段值关联查不同表

mysql根据字段值关联查不同表: 实现: 使用left join 结合case when 判断直接取值: select mp.member_id ,mp.store_id, case mp.store_type when 1 then bs.store_namewhen 2 then sc.store_namewhen 3 then be.store_name end as store_na…

Windows / Linux 查看计算机支持的最大内存

该操作一般用不到,主要用于给计算机扩展内存用。 一、Windows 系统 以管理员身份运行 cmd 1、查看主板最大支持内存容量 wmic memphysical get maxcapacity /format:value将返回值值是以KB为单位的,除以 1024,再除以 1024,即…

银行核心背后的落地工程体系丨混沌测试的场景设计与实战演练

本文作者: 张显华、窦智浩、卢进文 与集中式架构相比,分布式架构的系统复杂性呈指数级增长,混沌工程在信创转型、分布式架构转型、小机下移等过程中有效保障了生产的稳定性。本文分享了 TiDB 分布式数据库在银行核心业务系统落地中进行混沌测…

【AI学习】对指令微调(instruction tuning)的理解

前面对微调(Fine-tuning)的学习中,提到指令微调。当时,不清楚何为指令微调,也一直没来得及仔细学习。 什么是指令微调?LLM经过预训练后,通过指令微调提升模型的指令遵循能力。所谓指令&#xf…

【微记录】dmidecode是干什么的?常用来做什么?如何查看系统支持的PCIe版本号(本质:标准,Desktop Management Interface)

是什么 dmidecode 是一个在 Linux 系统提取硬件信息的命令行工具。DMI 代表桌面管理接口(Desktop Management Interface),是一种标准,收集桌面计算机的硬件信息,包括系统制造商、序列号、BIOS 信息、系统资产标签等。…

AI图像生成-基本步骤

模型板块 1、新建采样器:新建节点-》采样器-》K采样器 2、拖动模型节点后放开,选择checkpoint加载器(简易),模型新建成功 提示词板块 1、拖动正面条件节点后放开,选择CLIP文本编码器,模型新建…

UV胶的应用场景有哪些?

UV胶是一种特殊的胶水,其固化过程需要紫外光照射。它具有快速固化、高强度、无溶剂挥发等优点,因此在许多应用场景中被广泛使用。UV胶的应用场景非常广泛,包括但不限于以下几个方面: 1.电子产品组装: UV胶在电子产品的组装中扮演…

SHELL-双重循环习题练习

1.99乘法表 #!/bin/bash #99乘法表for ((second1; second<9; second)) dofor ((first1; first<second; first))do echo -n -e "${first}*${second}$[first*second]\t" done echo done ######### 首先定义了一个外循环变量second&#xff0c;初始值为1&am…

【JavaEE】Spring Web MVC入门:掌握Spring的MVC框架基础

目录 Spring Web MVC什么是Spring Web MVCMVC 定义什么是Spring MVC 学习Spring MVC1. 项目准备2. 建立连接 Spring Web MVC 什么是Spring Web MVC 官⽅对于 Spring MVC 的描述是这样的&#xff1a; Spring Web MVC 是基于 Servlet API 构建的原始 Web 框架&#xff0c;从⼀…

【go项目01_学习记录12】

代码组织 1 代码结构2 重构与测试2.1 安装测试功能2.2 testify 的常用断言函数 3 表组测试 1 代码结构 所有的代码写在一个main.go文件里面&#xff0c;GO编译器也是可以正常执行的。但是当代码量很庞大时&#xff0c;很难进行维护。 Go Web 程序的代码组织 单文件——反模式…

C51 单片机编程模板及编码规范

文章目录 一、C51 单片机模板创建1. 新建工程及选型2. 创建主程序文件3. 创建主程序的头文件4. 编译配置5. 其他 二、C51 的编码规范 在查阅了很多关于 C51 单片机的程序后&#xff0c;个人感觉目前网上有关 C51 单片机程序的质量参差不齐&#xff0c;很多程序的代码风格及其糟…

Kubernetes——CNI网络组件

目录 一、Kubernetes三种接口 二、Kubernetes三种网络 三、VLAN与VXLAN 1.VLAN 2.VXLAN 3.区别 3.1作用不同 3.2vxlan支持更多的二层网络 3.3已有的网络路径利用效率更高 3.4防止物理交换机Mac表耗尽 3.5相对VLAN技术&#xff0c;VXLAN技术具有以下优势 四、CNI网…

设计模式-动态代理

目录 定义 代理模式的优缺点 优点 缺点 应用场景 静态代理 动态代理 相关资料 定义 代理模式&#xff08;Proxy Pattern&#xff09;是一种结构型设计模式&#xff0c;它的概念很简单&#xff0c;它通过创建一个代理对象来控制对原始对象的访问。代理模式主要涉及两个…