【C++】priority_queues(优先级队列)和反向迭代器适配器的实现

目录

  • 一、 priority_queue
    • 1.priority_queue的介绍
    • 2.priority_queue的使用
      • 2.1、接口使用说明
      • 2.2、优先级队列的使用样例
    • 3.priority_queue的底层实现
      • 3.1、库里面关于priority_queue的定义
      • 3.2、仿函数
        • 1.什么是仿函数?
        • 2.仿函数样例
      • 3.3、实现优先级队列
        • 1. 1.0版本的实现
        • 2. 2.0版本的实现
  • 二、反向迭代器适配器

前言

继上一篇stack和queue我们讲解了其实现原理,里面也提到了容器适配器的概念,本篇我们要讲的优先级队列,也是一种容器适配器,另外我们再顺带讲一下反向迭代器,这个也是一个容器适配器哦,废话不多说,我们直接切入正题

一、 priority_queue

1.priority_queue的介绍

priority_queue他是一种容器适配器,但其实他底层和堆差不多,接口和堆也非常像,功能也是,默认情况下是大堆,你也可以用仿函数把他改成小堆

它的接口有以下几个:

  1. empty():检测容器是否为空
  2. size():返回容器中有效元素个数
  3. front():返回容器中第一个元素的引用
  4. push_back():在容器尾部插入元素
  5. pop_back():删除容器尾部元素

priority_queue的底层是堆,堆其实是完全二叉树,而完全二叉树的物理结构又是类似数组这种连续的物理空间,所以说适配priority_queue的容器要能够随机访问下标,需要支持随机访问迭代器,以便始终在内部保持堆结构,一般我们用vector作为它的默认容器,deque也可以

2.priority_queue的使用

2.1、接口使用说明

在这里插入图片描述

2.2、优先级队列的使用样例

priority_queue<int> pq;
pq.push(1);
pq.push(2);
pq.push(3);
pq.push(4);
pq.push(5);
while (!pq.empty())
{
	cout << pq.top() << " ";
	pq.pop();
}
//打印结果是5,4,3,2,1

tips:默认情况下大的优先级高,底层是个大堆

3.priority_queue的底层实现

3.1、库里面关于priority_queue的定义

在这里插入图片描述
priority_queue类模板参数多了一个Compare,这个参数是用来调节大小堆的,默认的less是大堆,greater是小堆
tips:
在这里插入图片描述

3.2、仿函数

1.什么是仿函数?

仿函数又被叫做函数对象,它们是通过重载operator()运算符的类的实例,它们可以像函数那样被调用,具有这样特性的就是仿函数

2.仿函数样例
template<class T>
struct Less
{
	bool operator()(const T& x, const T& y)
	{
		return x < y;
	}
};

int main()
{
	Less<int> lessfunc;
	cout << lessfunc.operator()(1, 2) << endl;
	cout << lessfunc(2, 3) << endl;//就这样乍一看还以为是函数调用,其实这是仿函数
	cout << Less<int>()(1, 2) << endl;//通过匿名对象来调用
	return 0;
}

3.3、实现优先级队列

1. 1.0版本的实现
template<class T,class Container=vector<T>>
class priority_queue
{
public:
	size_t size()
	{
		return _con.size();
	}
	void adjust_up(size_t child)
	{
		size_t parent = (child - 1) / 2;
		while (child>0)
		{
			if (_con[child] > _con[parent])
			{
				swap(_con[child], _con[parent]);
				child = parent;
				parent = (child - 1) / 2;
			}
			else
			{
				break;
			}
		}
	}
	void adjust_down(size_t parent)
	{
		size_t child = parent * 2 + 1;
		while (child<_con.size())
		{
			if (child + 1 <_con.size() && _con[child] < _con[child + 1])
			{
				child++;
			}
			if (_con[child] > _con[parent])
			{
				swap(_con[child], _con[parent]);
				parent = child;
				child = parent * 2 + 1;
			}
			else
			{
				break;
			}
		}
	}
	void push(const T& val)
	{
		_con.push_back(val);//先尾插
		adjust_up(_con.size()-1);//再向上调整
	}
	void pop()
	{
		swap(_con[0], _con[_con.size() - 1]);//先把要删除的堆顶元素和最后一个元素交换
		_con.pop_back();//然后删除最后一个元素
		adjust_down(0);//再进行向下调整
	}
	const T& top()
	{
		return _con[0];
	}
	
	bool empty()
	{
		return _con.empty();
	}

private:
	Container _con;
};

这里重点讲一下向上调整建堆和向下调整建堆,我们以建小堆为例:
在这里插入图片描述
向下调整的原理和向上调整很像,我就不多讲解了

2. 2.0版本的实现
template<class T>
struct less//这个虽然叫less但是它是大堆
{
	bool operator()(const T& x, const T& y)
	{
		return x < y;
	}
};
template<class T>
struct greater//这个虽然叫greater,但是他是小堆
{
	bool operator()(const T& x, const T& y)
	{
		return x > y;
	}
};
template<class T,class Container=vector<T>,class Com=less<T>>
class priority_queue
{
public:
	size_t size()
	{
		return _con.size();
	}
	void adjust_up(size_t child)
	{
		Com com;//搞一个仿函数对象
		size_t parent = (child - 1) / 2;
		while (child>0)
		{
			//if (_con[child] > _con[parent])
			//if ( _con[parent]<_con[child] )
			if(com(_con[parent],_con[child]))
			{//注意这里换成仿函数的时候要和它里面的<对上,再替换成仿函数对象调用
				swap(_con[child], _con[parent]);
				child = parent;
				parent = (child - 1) / 2;
			}
			else
			{
				break;
			}
		}
	}
	void adjust_down(size_t parent)
	{
		Com com;
		size_t child = parent * 2 + 1;
		while (child<_con.size())
		{
			//if (child + 1 <_con.size() && _con[child] < _con[child + 1])
			if (child + 1 < _con.size() && com(_con[child] , _con[child + 1]))
			{
				child++;
			}
			//if (_con[child] > _con[parent])
			//if (_con[parent]< _con[child])
			if (com(_con[parent] , _con[child]))
			{
				swap(_con[child], _con[parent]);
				parent = child;
				child = parent * 2 + 1;
			}
			else
			{
				break;
			}
		}
	}
	void push(const T& val)
	{
		_con.push_back(val);//先尾插
		adjust_up(_con.size()-1);//再向上调整
	}
	void pop()
	{
		swap(_con[0], _con[_con.size() - 1]);//先把要删除的堆顶元素和最后一个元素交换
		_con.pop_back();//然后删除最后一个元素
		adjust_down(0);//再进行向下调整
	}
	const T& top()
	{
		return _con[0];
	}
	
	bool empty()
	{
		return _con.empty();
	}

private:
	Container _con;
};

tips:

int main()
{
	priority_queue<int,vector<int>,greater<int>> pq;
	//注意这里:如果你要传仿函数的参数类型,一定不要忘记了这个vector<int>
	//不能跳过这个缺省参数去传他后面的其他参数,切记切记!!!
	return 0;
}

二、反向迭代器适配器

反向迭代器适配器,可以根据正向迭代器适配出它相应的反向迭代器

反向迭代器的实现思想其实很简单,相比我们前面list的实现;我们在这里实现反向迭代器主要是利用正向迭代器来替我们完成,库里面的实现讲求了对称,begin/end和rbegin/rend是堆成的
在这里插入图片描述

template<class iterator, class Ref, class Ptr>
struct ReserveIterator
{
	typedef ReserveIterator<iterator, Ref, Ptr> Self;
	iterator _it;
	ReserveIterator(iterator it)
		:_it(it)
	{}
	Ref operator*()
	{
		Iterator tmp = _it;
		return *(--tmp);
	}

	Ptr operator->()
	{
		return &(operator*());
	}
	Self& operator++()
	{
		--_it;
		return *this;
	}
	Self& operator--()
	{
		++_it;
		return *this;
	}
	bool operator!=(const Self& s)
	{
		return _it != s._it;
	}
};

关于容器适配器之类的容器我们就先讲到这里,我们下期浅谈一下模板✌

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/625655.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DGC-GNN 配置运行

算法 DGC-GNN&#xff0c;这是一种全局到局部的图神经网络&#xff0c;用于提高图像中2D关键点与场景的稀疏3D点云的匹配精度。与依赖视觉描述符的方法相比&#xff0c;这种方法具有较低的内存需求&#xff0c;更好的隐私保护&#xff0c;并减少了对昂贵3D模型维护的需求。DGC-…

树莓派发送指令控制FPGA板子上的流水灯程序

文章目录 前言一、树莓派简介二、整体实现步骤三、树莓派设置四、树莓派串口代码五、Verilog代码5.1 串口接收模块5.2 流水灯模块 六、quartus引脚绑定七、 运行效果总结参考 前言 ​ 本次实验的目的是通过树莓派和FPGA之间的串口通信&#xff0c;控制FPGA开发板上的小灯。实验…

LBSS84LT1G 130MA 50V P沟道小电流MOS管

LBSS84LT1G作为一款P沟道功率MOSFET&#xff0c;由于其低导通电阻和快速切换特性&#xff0c;在电机控制中有着广泛的应用。以下是几个典型的应用案例&#xff1a; 1. 直流电机驱动&#xff1a;在直流电机驱动电路中&#xff0c;LBSS84LT1G可用于控制电机的转速和方向。通过控…

WebSocket前后端建立以及使用

1、什么是WebSocket WebSocket 是一种在 Web 应用程序中实现双向通信的协议。它提供了一种持久化的连接&#xff0c;允许服务器主动向客户端推送数据&#xff0c;同时也允许客户端向服务器发送数据&#xff0c;实现了实时的双向通信。 这部分直接说你可能听不懂&#xff1b;我…

nestJs中跨库查询

app.module.ts中配置 模块的module中 注意实体类在写的时候和数据库中的表名一样 service中使用一下

【Cesium解读】Cesium中primitive/entity贴地

官方案例 Cesium Sandcastle Cesium Sandcastle 好文推荐&#xff1a;Cesium贴地设置_primitive贴地-CSDN博客 scene.globe.depthTestAgainstTerrain true; True if primitives such as billboards, polylines, labels, etc. should be depth-tested against the terrain…

【C++】内联函数、auto、范围for

文章目录 1.内联函数2.auto关键字2.1auto简介2.2auto的注意事项2.3auto不能推导的场景 3.基于范围的for循环(C11)4.指针空值nullptr(C11) 1.内联函数 概念&#xff1a; 以inline修饰的函数叫做内联函数&#xff0c;编译时C编译器会在调用内联函数的地方展开&#xff0c;没有函…

CLIPDraw:通过语言-图像编码器探索文本到绘图合成

摘要 本工作介绍了 CLIPDraw&#xff0c;这是一种基于自然语言输入合成新颖绘画的算法。CLIPDraw 不需要任何训练&#xff1b;相反&#xff0c;它使用了一个预先训练好的 CLIP 语言-图像编码器作为衡量标准&#xff0c;以最大化给定描述与生成绘画之间的相似度。关键的是&…

使用XxlCrawler抓取全球航空公司ICAO三字码

目录 前言 一、数据源介绍 1、目标网站 2、页面渲染结构 二、XxlCrawler信息获取 1、创建XxlCrawler对象 2、定义PageVo对象 3、直接PageVO解析 4、自定义解析 总结 前言 长距离旅行或者出差&#xff0c;飞机一定是出行的必备方式。对于旅行达人或者出差人员而言&…

为什么使用AI 在游戏中不犯法

使用AI在游戏中本身并不违法&#xff0c;甚至在很多情况下&#xff0c;游戏公司自己也会在游戏中集成AI来提高游戏体验&#xff0c;例如通过AI驱动的非玩家角色&#xff08;NPC&#xff09;来增加游戏的互动性和挑战性。然而&#xff0c;使用AI是否违法取决于AI的使用方式和目的…

轻松掌握抖音自动点赞技巧,快速吸粉

在当今这个信息爆炸的时代&#xff0c;抖音作为短视频领域的领头羊&#xff0c;不仅汇聚了庞大的用户群体&#xff0c;也成为了品牌和个人展示自我、吸引粉丝的重要平台。如何在众多内容创作者中脱颖而出&#xff0c;实现高效引流获客&#xff0c;精准推广自己的内容&#xff0…

Context Pattern上下文模式

使用情景 全局使用的配置&#xff0c;数据库的连接。MVC中的跨层数据传输携带请求ID&#xff0c;用户信息等用户权限信息线程上下文 跨层数据共享 统一调用参数 携带多个事务需要处理的对象 携带用户信息 使用ThreadLocal

项目-坦克大战-让坦克动起来

为什么写这个项目 好玩涉及到java各个方面的技术 1&#xff0c;java面向对象 2&#xff0c;多线程 3&#xff0c;文件i/o操作 4&#xff0c;数据库巩固知识 java绘图坐标体系 坐标体系-介绍 坐标体系-像素 计算机在屏幕上显示的内容都是由屏幕上的每一个像素组成的像素是一…

drippingblues 靶机实战

信息收集&#xff1a; Nmap: 存活&#xff1a; 靶机ip&#xff1a;192.168.10.110 端口&#xff1a; 服务&#xff1a; 发现ftp服务可以匿名登录。且用户名是FTP。 发现一个压缩包&#xff0c;下载并爆破。 得到密码 072528035。发现关键字 drip。里面还有一个 secret.zip(…

GIT基础01 基础命令与分支

前言 我们知道git是开发中比较常见的版本控制工具 我们可以先提出一个场景: 老板让你去修改方案 第一次修改 打回 第二次修改 打回 第n次修改 老板让你使用第一次的版本 阁下如何应对??? 我对每个版本进行编号?? 是一种方案 但是这里也是有缺陷的 比如说在很多版本中找…

将 Vue、React、Angular、HTML 等一键打包成 macOS 和 Windows 平台客户端应用

应用简介 PPX 基于 pywebview 和 PyInstaller 框架&#xff0c;构建 macOS 和 Windows 平台的客户端。本应用的视图层支持 Vue、React、Angular、HTML 中的任意一种&#xff0c;业务层支持 Python 脚本。考虑到某些生物计算场景数据量大&#xff0c;数据私密&#xff0c;因此将…

odoo16 银行对账单导入改造

解决问题: odoo原生功能的话 是不能在系统上临时处理文件内容的&#xff0c;只会提示文件内容格式不对。 原始文件格式 在头部与尾部 格式问题&#xff0c;例如csv文件和 C53 文件&#xff0c;做一个前置弹框处理数据之后再导入 camt效果: csv效果:

Ajax额

原生Ajax xml 已被json取代 http 请求方法urlhttp版本号 network 谷歌浏览器查看请求报文和响应报文 F12 network header里面有 请求头 响应头 点击view source 可以查看请求响应行 请求体在请求行头下面 get请求有url参数&#xff0c;请求体变为query String…

九、e2studio VS STM32CubeIDE之const修饰BSP函数的形参

目录 一、概述/目的 二、通过串口发送函数对比 2.1 stm32 hal库 VS renesas FSP 2.2 const修改函数形参的作用 2.2.1 值传递-副本 2.2.2 指针传递&#xff08;就近原则&#xff09; 2.2.2.1 const修饰&#xff1a;*P 2.2.2.2 const修饰&#xff1a;指针变量P 2.2.2.3 …