鸿蒙内核源码分析(消息封装篇) | 剖析LiteIpc(上)进程通讯内容

基本概念

LiteIPCOpenHarmony LiteOS-A内核提供的一种新型IPC(Inter-Process Communication,即进程间通信)机制,为轻量级进程间通信组件,为面向服务的系统服务框架提供进程间通信能力,分为内核实现和用户态实现两部分,其中内核实现完成进程间消息收发、IPC内存管理、超时通知和死亡通知等功能;用户态提供序列化和反序列化能力,并完成IPC回调消息和死亡消息的分发。

我们主要讲解内核态实现部分,本想一篇说完,但发现它远比想象中的复杂和重要,所以分两篇说,通讯内容和通讯机制。通讯的内容就是消息,围绕着消息展开的结构体多达10几个,捋不清它们之间的关系肯定是搞不懂通讯的机制,所以咱们得先搞清楚关系再说流程。下图是笔者读完LiteIPC模块后绘制的消息封装图,可以说LiteIPC是内核涉及结构体最多的模块,请消化理解,本篇将围绕它展开。
[图片上传失败…(image-a29828-1715581843494)]

系列篇多次提过,内核的每个模块都至少围绕着一个重要结构体展开,抓住了它顺瓜摸藤就能把细节抹的清清楚楚,于LiteIPC,这个结构体就是IpcMsg 。

运行机制

typedef struct {//IPC 消息结构体
    MsgType        type;       	/**< cmd type, decide the data structure below | 命令类型,决定下面的数据结构*/
    SvcIdentity    target;    	/**< serviceHandle or targetTaskId, depending on type | 因命令类型不同而异*/
    UINT32         code;      	/**< service function code | 服务功能代码*/
    UINT32         flag;		///< 标签
#if (USE_TIMESTAMP == 1)
    UINT64         timestamp;	///< 时间戳,用于验证
#endif
    UINT32         dataSz;    	/**< size of data | 消息内容大小*/
    VOID           *data;		///< 消息的内容,真正要传递的消息,这个数据内容是指spObjNum个数据的内容,定位就靠offsets
    UINT32         spObjNum;	///< 对象数量, 例如 spObjNum = 3时,offsets = [0,35,79],代表从data中读取 0 - 35给第一个对象,依次类推
    VOID           *offsets;	///< 偏移量,注意这里有多少个spObjNum就会有多少个偏移量,详见 CopyDataFromUser 来理解
    UINT32         processID; 	/**< filled by kernel, processId of sender/reciever | 由内核提供,发送/接收消息的进程ID*/
    UINT32         taskID;    	/**< filled by kernel, taskId of sender/reciever | 由内核提供,发送/接收消息的任务ID*/
#ifdef LOSCFG_SECURITY_CAPABILITY	
    UINT32         userID;		///< 用户ID
    UINT32         gid;			///< 组ID
#endif
} IpcMsg;

解读

  • 第一个type,通讯的本质就是你来我往,异常当然也要考虑

      typedef enum {	
          MT_REQUEST,	///< 请求
          MT_REPLY,	///< 回复
          MT_FAILED_REPLY,///< 回复失败
          MT_DEATH_NOTIFY,///< 通知死亡
          MT_NUM
      } MsgType;
    
    
  • 第二个targetLiteIPC中有两个主要概念,一个是ServiceManager,另一个是Service。整个系统只能有一个ServiceManager,而Service可以有多个。ServiceManager有两个主要功能:一是负责Service的注册和注销,二是负责管理Service的访问权限(只有有权限的任务Task可以向对应的Service发送IPC消息)。首先将需要接收IPC消息的任务通过ServiceManager注册成为一个Service,然后通过ServiceManager为该Service任务配置访问权限,即指定哪些任务可以向该Service任务发送IPC消息。LiteIPC的核心思想就是在内核态为每个Service任务维护一个IPC消息队列,该消息队列通过LiteIPC设备文件向上层用户态程序分别提供代表收取IPC消息的读操作和代表发送IPC消息的写操作。

    /// SVC(service)服务身份证 
      typedef struct {
          UINT32         handle;  //service 服务ID, 范围[0,最大任务ID]
          UINT32         token;	//由应用层带入
          UINT32         cookie;	//由应用层带入
      } SvcIdentity;
  • codetimestamp由应用层设定,用于确保回复正确有效,详见CheckRecievedMsg
  • dataSzdataspObjNumoffsets这四个需连在一起理解,是重中之重。其实消息又分成三种类型(对象)
      typedef enum {
          OBJ_FD,		///< 文件句柄
          OBJ_PTR,	///< 指针
          OBJ_SVC		///< 服务,用于设置权限
      } ObjType;
      typedef union {
          UINT32      fd; 	///< 文件描述符
          BuffPtr     ptr;	///< 缓存的开始地址,即:指针,消息从用户空间来时,要将内容拷贝到内核空间
          SvcIdentity  svc;	///< 服务,用于设置访问权限
      } ObjContent;
      typedef struct { // IpcMsg->data 包含三种子消息,也要将它们读到内核空间
          ObjType     type; ///< 类型
          ObjContent  content;///< 内容
      } SpecialObj;

这三种对象都打包在data中,总长度是dataSzspObjNum表示个数,offsets是个整型数组,标记了对应第几个对象在data中的位置,这样就很容易从data读到对象的数据。
UINT32 fd类型对象通讯的实现是通过两个进程间共享同一个fd来实现通讯,具体实现函数为HandleFd

    /// 按句柄方式处理, 参数 processID 往往不是当前进程
      LITE_OS_SEC_TEXT STATIC UINT32 HandleFd(UINT32 processID, SpecialObj *obj, BOOL isRollback)
      {
          int ret;
          if (isRollback == FALSE) { // 不回滚
              ret = CopyFdToProc(obj->content.fd, processID);//目的是将两个不同进程fd都指向同一个系统fd,共享FD的感觉
              if (ret < 0) {//返回 processID 的 新 fd
                  return ret;
              }
              obj->content.fd = ret; // 记录 processID 的新FD, 可用于回滚
          } else {// 回滚时关闭进程FD
              ret = CloseProcFd(obj->content.fd, processID);
              if (ret < 0) {
                  return ret;
              }
          }

SvcIdentity svc用于设置进程<->任务之间彼此访问权限,具体实现函数为HandleSvc

    /// 按服务的方式处理,此处推断 Svc 应该是 service 的简写 @note_thinking
      LITE_OS_SEC_TEXT STATIC UINT32 HandleSvc(UINT32 dstTid, const SpecialObj *obj, BOOL isRollback)
      {
          UINT32 taskID = 0;
          if (isRollback == FALSE) {
              if (IsTaskAlive(obj->content.svc.handle) == FALSE) {
                  PRINT_ERR("Liteipc HandleSvc wrong svctid\n");
                  return -EINVAL;
              }
              if (HasServiceAccess(obj->content.svc.handle) == FALSE) {
                  PRINT_ERR("Liteipc %s, %d\n", __FUNCTION__, __LINE__);
                  return -EACCES;
              }
              if (GetTid(obj->content.svc.handle, &taskID) == 0) {//获取参数消息服务ID所属任务
                  if (taskID == OS_PCB_FROM_PID(OS_TCB_FROM_TID(taskID)->processID)->ipcInfo->ipcTaskID) {//如果任务ID一样,即任务ID为ServiceManager
                      AddServiceAccess(dstTid, obj->content.svc.handle);
                  }
              }
          }
          return LOS_OK;
      }

BuffPtr ptr 是通过指针传值,具体实现函数为HandlePtr,对应结构体为BuffPtr

      typedef struct {
          UINT32         buffSz;  ///< 大小
          VOID           *buff;	///< 内容 内核需要将内容从用户空间拷贝到内核空间的动作 
      } BuffPtr;
    /// 按指针方式处理
      LITE_OS_SEC_TEXT STATIC UINT32 HandlePtr(UINT32 processID, SpecialObj *obj, BOOL isRollback)
      {
          VOID *buf = NULL;
          UINT32 ret;
          if ((obj->content.ptr.buff == NULL) || (obj->content.ptr.buffSz == 0)) {
              return -EINVAL;
          }
          if (isRollback == FALSE) {
              if (LOS_IsUserAddress((vaddr_t)(UINTPTR)(obj->content.ptr.buff)) == FALSE) { // 判断是否为用户空间地址
                  PRINT_ERR("Liteipc Bad ptr address\n"); //不在用户空间时
                  return -EINVAL;
              }
              buf = LiteIpcNodeAlloc(processID, obj->content.ptr.buffSz);//在内核空间分配内存接受来自用户空间的数据
              if (buf == NULL) {
                  PRINT_ERR("Liteipc DealPtr alloc mem failed\n");
                  return -EINVAL;
              }
              ret = copy_from_user(buf, obj->content.ptr.buff, obj->content.ptr.buffSz);//从用户空间拷贝数据到内核空间
              if (ret != LOS_OK) {
                  LiteIpcNodeFree(processID, buf);
                  return ret;
              }//这里要说明下 obj->content.ptr.buff的变化,虽然都是用户空间的地址,但第二次已经意义变了,虽然数据一样,但指向的是申请经过拷贝后的内核空间
              obj->content.ptr.buff = (VOID *)GetIpcUserAddr(processID, (INTPTR)buf);//获取进程 processID的用户空间地址,如此用户空间操作buf其实操作的是内核空间
              EnableIpcNodeFreeByUser(processID, (VOID *)buf);//创建一个IPC节点,挂到可使用链表上,供读取
          } else {
              (VOID)LiteIpcNodeFree(processID, (VOID *)GetIpcKernelAddr(processID, (INTPTR)obj->content.ptr.buff));//在内核空间释放IPC节点
          }
          return LOS_OK;
      }
  • processIDtaskID则由内核填充,应用层是感知不到进程和任务的,暴露给它是服务ID,SvcIdentity.handle,上层使用时只需向服务发送/读取消息,而服务是由内核创建,绑定在任务和进程上。所以只要有服务ID就能查询到对应的进程和任务ID。
  • userIDgid涉及用户和组安全模块,请查看系列相关篇。

进程和任务

再说两个结构体 ProcIpcInfoIpcTaskInfo
LiteIPC实现的是进程间的通讯,所以在进程控制块中肯定有它的位置存在,即:ProcIpcInfo

typedef struct {
    IpcPool pool;				///< ipc内存池,IPC操作所有涉及内核空间分配的内存均有此池提供
    UINT32 ipcTaskID;			///< 指定能ServiceManager的任务ID
    LOS_DL_LIST ipcUsedNodelist;///< 已使用节点链表,上面挂 IpcUsedNode 节点, 申请IpcUsedNode的内存来自内核堆空间
    UINT32 access[LOSCFG_BASE_CORE_TSK_LIMIT];	///< 允许进程通过IPC访问哪些任务
} ProcIpcInfo;

而进程只是管家,真正让内核忙飞的是任务,在任务控制块中也应有LiteIPC一席之地,即:IpcTaskInfo

typedef struct {
    LOS_DL_LIST     msgListHead;///< 上面挂的是一个个的 ipc节点 上面挂 IpcListNode,申请IpcListNode的内存来自进程IPC内存池
    BOOL            accessMap[LOSCFG_BASE_CORE_TSK_LIMIT]; ///< 此处是不是应该用 LOSCFG_BASE_CORE_PROCESS_LIMIT ? @note_thinking 
    				///< 任务是否可以给其他进程发送IPC消息
} IpcTaskInfo;

两个结构体不复杂,把发送/回复的消息挂到对应的链表上,并提供进程<->任务间彼此访问权限功能accessaccessMap,由谁来设置权限呢 ? 上面已经说过了是 HandleSvc

IPC内存池

还有最后一个结构体IpcPool

typedef struct {//用户空间和内核空间的消息传递通过偏移量计算
    VOID   *uvaddr;	///< 用户空间地址,由kvaddr映射而来的地址,这两个地址的关系一定要搞清楚,否则无法理解IPC的核心思想
    VOID   *kvaddr;	///< 内核空间地址,IPC申请的是内核空间,但是会通过 DoIpcMmap 将这个地址映射到用户空间
    UINT32 poolSize; ///< ipc池大小
} IpcPool;

它是LiteIPC实现通讯机制的基础,是内核设计很巧妙的地方,实现了在用户态读取内核态数据的功能。请想想它是如何做到的 ?

鸿蒙全栈开发全新学习指南

也为了积极培养鸿蒙生态人才,让大家都能学习到鸿蒙开发最新的技术,针对一些在职人员、0基础小白、应届生/计算机专业、鸿蒙爱好者等人群,整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线【包含了大厂APP实战项目开发】

本路线共分为四个阶段:

第一阶段:鸿蒙初中级开发必备技能

第二阶段:鸿蒙南北双向高工技能基础:gitee.com/MNxiaona/733GH

第三阶段:应用开发中高级就业技术

第四阶段:全网首发-工业级南向设备开发就业技术:gitee.com/MNxiaona/733GH

《鸿蒙 (Harmony OS)开发学习手册》(共计892页)

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:gitee.com/MNxiaona/733GH

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

鸿蒙开发面试真题(含参考答案):gitee.com/MNxiaona/733GH

鸿蒙入门教学视频:

美团APP实战开发教学:gitee.com/MNxiaona/733GH

写在最后

  • 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往小编:gitee.com/MNxiaona/733GH

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/625429.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

centos7中如何优雅的动态切换jdk版本?

在 CentOS 7 中动态切换 JDK 版本可以通过多种方法实现&#xff0c;其中最常见的方法是使用 alternatives 命令&#xff0c;这是 CentOS 和其他基于 Red Hat 的系统中用于管理多个软件版本的标准工具。下面我会详细介绍如何使用 alternatives 命令来切换 JDK 版本。 步骤 1: 安…

【QuikGraph】C#调用第三方库计算有向图、无向图的连通分量

QuikGraph库 项目地址&#xff1a;https://github.com/KeRNeLith/QuikGraph 相关概念 图论、连通分量、强连通分量相关概念&#xff0c;可以从其他博客中复习&#xff1a; https://blog.csdn.net/weixin_50564032/article/details/123289611 https://zhuanlan.zhihu.com/p/3…

记录Spring Boot 2.3.4.RELEASE版注解方式实现AOP和通知的执行顺序

1.advice 按照以下的顺序执行 输出结果&#xff1a;(正常和异常) 说明&#xff1a;Spring boot 2.3.4.RELEASE 版本使用的AOP是spring-aop-5.2.9.RELEASE&#xff0c;AOP的通知顺序不一样。 可以测试下Spring boot 2.1.1.RELEASE 版做对比&#xff0c;发现结果是不一样的。 2…

在React中利用Postman测试代码获取数据

文章目录 概要名词解释1、Postman2、axios 使用Postman测试API在React中获取并展示数据小结 概要 在Web开发中&#xff0c;通过API获取数据是一项常见任务。Postman是一个功能强大的工具&#xff0c;可以帮助开发者测试API&#xff0c;并查看API的响应数据。在本篇博客中&…

不懂数字后端Box List、Polygon的意思?

什么是BOX&#xff1f; 景芯SoC做design planning的第一步就是确定floorplan的box&#xff0c;也就是设计的区域。这个区域可以划分为三个边界&#xff0c;如下图所示&#xff1a; Die Box 最外面一圈&#xff0c;我们称为 Die Box&#xff0c;也就是用来放置 IO 单元&#x…

Java面试八股之String类的常用方法有哪些

Java中String类的常用方法有哪些 获取字符串信息&#xff1a; length()&#xff1a;返回字符串的字符数。 isEmpty()&#xff1a;判断字符串是否为空&#xff08;即长度为0&#xff09;。 访问单个字符&#xff1a; charAt(int index)&#xff1a;返回指定索引处的字符。 …

使用Docker创建verdaccio私服

verdaccio官网 1.Docker安装 这边以Ubuntu安装为例Ubuntu 安装Docker​&#xff0c;具体安装方式请根据自己电脑自行搜索。 2.下载verdaccio docker pull verdaccio/verdaccio3.运行verdaccio 运行容器&#xff1a; docker run -it -d --name verdaccio -p 4873:4873 ver…

29、Qt使用上下文菜单(右键菜单)

说明&#xff1a;使用四种方式实现鼠标右击界面&#xff0c;显示出菜单&#xff0c;菜单上有两个动作&#xff0c;选择两个动作&#xff0c;分别打印“111”和“222”。 界面样式如下&#xff1a; 一、方法1&#xff1a;重写鼠标事件mousePressEvent .h中的代码如下&#xff…

AIConnect 综合算力服务网络:引领智能未来,创造无限可能性!

2022年11月30日&#xff0c;由OpenAI开发的大模型聊天机器人GPT-3发布&#xff0c;首个完全意义上通过图灵测试的人工智能诞生了。这一里程碑事件的启发了人们对AI技术的发展和应用。在短短两年的时间里&#xff0c;各式各样的聊天AI&#xff0c;图片生成AI&#xff0c;视频生成…

B/S版+java开发的医院绩效考核系统maven+Visual Studio Code 医院绩效考核管理系统 提升医疗服务质量的关键

B/S版java开发的医院绩效考核系统mavenVisual Studio Code 医院绩效考核管理系统 提升医疗服务质量的关键 医院绩效评价系统的建设&#xff0c;优化医院绩效管理体系&#xff0c;规范化工作目标的设计、沟通、评价与反馈&#xff0c;改进和提供医院管理人员的管理能力和成效&am…

【强训笔记】day23

NO.1 思路&#xff1a;直接计算结果&#xff0c;先计算怪物可以抗几次攻击&#xff0c;再计算勇士受到的伤害&#xff0c;如果勇士的攻击力大于等于怪物的血量&#xff0c;那么就可以击杀无数只&#xff0c;如果勇士的血量正好是受到攻击的整数倍&#xff0c;那么击杀的怪物数…

深度解刨性能测试工具Locust

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 关注公众号【互联网杂货铺】&#xff0c;回复 1 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 Locust安装 …

强化训练:day8(求最小公倍数、数组中的最⻓连续⼦序列、字⺟收集)

文章目录 前言1. 最小公倍数1.1 题目描述1.2 解题思路1.3 代码实现 2. 数组中的最⻓连续⼦序列2.1 题目描述2.2 解题思路2.3 代码实现 3. 字母收集3.1 题目描述3.2 解题思路3.3 代码实现 总结 前言 1. 最小公倍数   2. 数组中的最⻓连续⼦序列   3. 字⺟收集 1. 最小公倍数…

安卓APP+TCP+服务器端

1、在.xml文件中添加权限 <uses-permission android:name"android.permission.ACCESS_WIFI_STATE"/><uses-permission android:name"android.permission.INTERNET"/>2、修改显示界面 <?xml version"1.0" encoding"utf-8&…

二叉树专题(有关二叉树的相关学习)

二叉树 1.数概念及结构 1.1树的结构 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的。 有一个特殊的结…

Git泄露(续)

接上一篇补充 git config --global user.name " " git config --global user.email 邮箱地址 配置用户名和邮箱 git commit 使其处于交互区&#xff0c;没有使用 -m&#xff0c;默认用vim 来编辑和提交信息 输入要提交的内容&#xff0c;然后按ESC建回到命令…

RT-DETR原创改进|加入SCNet中的SCConv[CVPR2020]自校准卷积模块!

⭐⭐ RT-DETR改进专栏|包含主干、模块、注意力机制、检测头等前沿创新 ⭐⭐ 一、 论文介绍 论文链接&#xff1a;http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf 代码链接&#xff1a;https://gitcode.com/MCG-NKU/SCNet/ 文章摘要&#xff1a; CNN的最新进展主要致力于设计更…

2024年3月 电子学会 青少年等级考试机器人理论真题五级

202403 青少年等级考试机器人理论真题五级 第 1 题 下图程序运行后&#xff0c;串口监视器显示的结果是&#xff1f;&#xff08; &#xff09; A&#xff1a;0 B&#xff1a;1 C&#xff1a;3 D&#xff1a;4 第 2 题 下列选项中&#xff0c;关于74HC595移位寄存器芯片的…

更高效的数据交互实现丨 DolphinDB Arrow 插件使用教程

Apache Arrow 是一种跨语言的内存数据交换格式&#xff0c;旨在为用户提供高效的数据结构&#xff0c;以实现在不同的数据处理系统之间共享数据而无需进行复制。它由 Apache 软件基金会开发和维护&#xff0c;目前已经成为许多大型数据处理和分析框架的核心组件之一。在分布式框…

【解决】Unity Build 应用程序运行即崩溃问题

开发平台&#xff1a;Unity 2021.3.7f1c1   一、问题描述 编辑器 Build 工程结束&#xff0c;但控制台 未显示 Build completed with a result of Succeeded [时间长度] 信息。该情况下打包流程正常&#xff0c;但应用程序包打开即崩溃。   二、问题测试记录 测试1&#xf…