涨点神器:即插即用特征融合模块!超低参数,性能依旧SOTA

在写论文时,一些通用性模块可以在不同的网络结构中重复使用,这简化了模型设计的过程,帮助我们加快了实验的迭代速度

比如在视觉任务中,即插即用的特征融合模块可以无缝集成到现有网络中,以灵活、简单的方式提升神经网络的性能。这类模块通过专注于数据的关键点和模式,帮助模型更有效地学习特征,从而提高在各种视觉任务中的准确度和效率

以南航提出的AFF模块、港大等提出的即插即用轻量级模块AdaptFormer为例:

  • AFF模块:一种即插即用的新注意力特征融合机制AFF,仅使用了35.1M的参数量就能达到性能优于SKNet、SENet等方法的效果。

  • AdaptFormer:核心是一种轻量级模块,微调不到0.2%,就能提高ViT的迁移能力,而不需要更新其原始的预训练参数。

为方便各位理解和运用,我这次精挑细选了8个即插即用特征融合模块。这些模块的来源文章以及代码我都整理了,并简单罗列了创新点,更详细的工作细节建议各位仔细阅读原文。

论文原文以及开源代码需要的同学看文末

Attentional Feature Fusion

方法:论文提出了一种统一的、普遍适用的特征融合方案,名为注意力特征融合,用于处理现代网络体系结构中的特征融合。为了更好地融合具有不一致语义和尺度的特征,作者提出了一种多尺度通道注意力模块。此外,作者还发现初始特征图的集成可能成为一个瓶颈,通过添加另一层注意力来缓解这个问题,称之为迭代注意力特征融合。

创新点:

  • 提出了一种统一且通用的方案,即注意力特征融合,适用于大多数常见场景,包括由短路连接和长路连接引起的特征融合以及在Inception层内部的特征融合。

  • 提出了一种多尺度通道注意力模块,用于更好地融合具有不一致语义和尺度的特征。通过在通道维度上聚合多尺度的上下文信息,可以同时强调分布更广泛的大对象和分布更局部的小对象,从而有助于网络在极端尺度变化下识别和检测对象。

  • 提出了迭代注意力特征融合方法,通过在输入特征中添加另一个注意力模块来改善初始融合质量,并通过逐步改进初始融合来提高性能。通过简单地将现有的特征融合运算符替换为提出的迭代注意力特征融合模块,可以提高各种网络的性能。

AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition

方法:论文提出了一种名为AdaptFormer的有效的适应Transformer的方法,可以高效地将预训练的ViTs适应到许多不同的图像和视频任务中。与现有的完全微调模型相比,AdaptFormer引入了轻量级模块,仅添加了不到2%的额外参数到ViT中,而且在不更新原始预训练参数的情况下,显著优于现有的100%完全微调模型在动作识别基准上的表现。

创新点:

  • AdaptMLP模块:作者引入了AdaptMLP模块,用于将预训练的ViT骨干网络适应于多个下游视觉识别任务。AdaptMLP模块包括两个子分支,一个与原始网络的MLP层相同,另一个是额外引入的轻量级模块用于任务特定的微调。AdaptMLP模块只引入少量参数,使得ViT的可迁移性得到提高,相比于全微调方法,在动作识别任务上能够取得更好的性能。

  • 平行设计:作者发现平行设计对于特征集成是一种有效的方式。平行设计通过一个独立的分支保留原始特征,并通过元素级缩放求和聚合更新的上下文信息。因此,作者选择了平行设计作为默认设置,因为它在性能上具有优势。平行设计与全微调相比,在参数开销较小的情况下,能够获得更好的性能。

DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention

方法:论文提出了一种细节增强注意力网络(DEA-Net)来解决单一图像去雾问题,其中包含细节增强卷积(DEConv)和内容引导注意力(CGA)两个部分。CGA通过为每个通道分配唯一的空间重要性映射(SIM)来关注特征中编码的更有用的信息,并提出了一个CGAFusion,即插即用的特征融合模块。通过结合上述组件,DEA-Net能够恢复高质量的无雾图像,实验证明其在PSNR指数上超过最先进的方法,并且只使用了3.653 M个参数。

创新点:

  • 设计了一种细节增强卷积(DEConv)层,通过并行部署多个普通卷积和差异卷积来提取特征,增强了表示和泛化能力,同时不引入额外的参数和计算成本。

  • 提出了一种内容引导注意力(CGA)机制,可以生成通道特定的空间重要性图(SIMs),并将通道注意力和空间注意力进行融合,以实现信息交互和有效的梯度流动。

  • 提出了基于CGA的混合融合方案,可以自适应地融合编码器部分的低级特征和相应的高级特征,通过学习到的空间权重对特征进行调节。

CFNet: Cascade Fusion Network for Dense Prediction

方法:论文提出了一种名为CFNet的新的架构,用于密集预测任务。与通常使用轻量级融合模块来融合由重型分类主干提取的多尺度特征的FPN及其变种不同,CFNet通过引入多级级联阶段来学习基于提取的高分辨率特征的多尺度表示。通过将特征集成操作插入到主干中,可以有效利用整个主干的大部分来有效地融合多尺度特征。

创新点:

  • CFNet引入了级联阶段的创新架构,以学习基于高分辨率特征的多尺度表示。

  • CFNet通过将特征集成操作插入到主干中,有效利用了整个主干的大部分来融合多尺度特征。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“特征即插”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/625183.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AIGC数字人视频创作平台,赋能企业常态化制作数字内容营销

随着数字人技术不断发展,AIGC、元宇宙等相关产业迅速发展,企业通过3D虚拟数字人定制,打造出专属的数字人作为企业与用户沟通的新桥梁。 作为3D、AI数字人技术服务商及方案提供商,广州虚拟动力一直致力于为各领域企业通过3D虚拟数字…

OpenAI春季更新:GPT-4o模型来了!!

昨晚OpenAI直播发布了春季更新,推出了GPT-4o模型。这个模型是继gpt-4-turbo之后官方定义的新旗舰模型,可以实时对音频、视觉和文本进行推理。 它真的让人觉得,AGI又更近一步了!! GPT-4o介绍 GPT-4o(“o”…

前端工程化 - 快速通关 - ES6

目录 ES6 1.1 let 1.2 const 1.3解构 1.4链判断 1.5参数默认值 1.6箭头函数 1.7模板字符串 1.8Promise 1.9Async 函数 1.10模块化 ES6 ●ECMAScript(ES) 是规范、 JavaScript 是 ES 的实现 ●ES6 的第一个版本 在 2015 年 6 月发布&#xff0c…

相机模型,坐标变换,畸变

小孔成像模型 墨子就记录了小孔成像是倒立的。这从几何光学的角度是很好理解的:光沿直线传播,上方和下方的光线交叉,导致在成像平面位置互换。 小孔的大小有什么影响? 小孔越大,进光量变大了,但是成像平…

微信加粉计数器

1.采用非注入式开发,支持无限多开 2.每个账号都有独立的分组,实时远程网页数据分享 3.后台功能强大,操作简单,自动去重复,准确计数分秒不差

【Python】理解WOE(Weight of Evidence)和IV(Information Value)

忠孝东路走九遍 脚底下踏著曾经你我的点点 我从日走到夜 心从灰跳到黑 我多想跳上车子离开伤心的台北 忠孝东路走九遍 穿过陌生人潮搜寻你的脸 有人走的匆忙 有人爱的甜美 谁会在意擦肩而过的心碎 🎵 动力火车《忠孝东路走九遍》 在信用评分和…

可视化 FlowChart 0.4.1 最强的拖拽组件

主要解决以及目标: ti-flowchart 能满足 二次开发的大部分需求。 下发GIF图可见,左边的模块A 由二次开发人员设计,通过向flowchart注册模块Dom,实现符合拖拽,编辑,布局,以及响应事件上抛。 实…

Debian12安装后更换为国内镜像源,切换root用户,解决用户名不在sudoers文件中此事将被报告

选择Debian作为编程开发最佳Linux的理由: Debian是面向程序员的最古老,最出色的Linux发行版之一。Debian提供了具有.deb软件包管理兼容性的超稳定发行版。Debian为程序员提供了许多最新功能。因此,它具有一个特殊的编程空间。Debian是开发人员…

第十六节:图 (20节)

一 图的概念 1)由点的集合和边的集合构成 2)虽然存在有向图和无向图的概念,但实际上都可以用有向图来表达 3)边上可能带有权值 二 图结构的表达 1)邻接表法 2)邻接矩阵法 3)除此之外还有其他众多…

adminlte 日期控件设置值

1,属性设置 $(function () {//Date range picker with time picker$(#reservationtime-1).daterangepicker({timePicker: false,timePickerIncrement: 1,timePicker24Hour: true,autoApply: true,singleDatePicker: true,locale: {format: YYYY-MM-DD,daysOfWeek: …

探讨 cs2019 c++ 的STL 库中的模板 conjunction 与 disjunction

(1)在 STL 库源码中这俩模板经常出现,用来给源码编译中的条件选择,模板的版本选择等提供依据。先给出其定义: 以及: 可以得出结论: conj 是为了查找逻辑布尔型模板参数中的第一个 false &#x…

JS中的宏任务和微任务

JavaScript 引擎是建立在一个事件循环系统之上的,它实时监控事件队列,如果有事件就执行,如果没有事件就等待。事件系统是一个典型的生产消费模式,生产者发出事件,接收者监听事件,在UI 开发中是常见的一个设…

LVM - Linux磁盘逻辑卷管理器概念讲解及实践

1、lvm概念 逻辑卷管理器(LogicalVolumeManager)本质上是一个虚拟设备驱动,是在内核中块设备和物理设备之间添加的一个新的抽象层次,它可以将几块磁盘(物理卷,PhysicalVolume)组合起来形成一个存储池或者卷组(VolumeGroup)。LVM可以每次从卷组中划分出不同大小的逻辑卷(Logi…

InternLM-XComposer2-4KHD开拓性的4K高清视觉-语言模型

大型视觉-语言模型(LVLM)在图像字幕和视觉问答(VQA)等任务中表现出色。然而,受限于分辨率,这些模型在处理包含细微视觉内容的图像时面临挑战。 分辨率的限制严重阻碍了模型处理含有丰富细节的图像的能力。…

推荐5个实用的工具软件,提高效率

​ 现在,有很多实用的工具和软件可以帮助我们更高效地完成各种任务。以下是几个值得推荐的工具和软件,能够极大地提高我们的工作效率。 1.浏览器插件——SuperCopy ​ SuperCopy是一款浏览器插件,主要用于增强网页文本的复制功能。它解决了…

SQL注入工具sqlmap安装使用详解靶场实验

★★免责声明★★ 文章中涉及的程序(方法)可能带有攻击性,仅供安全研究与学习之用,读者将信息做其他用途,由Ta承担全部法律及连带责任,文章作者不承担任何法律及连带责任。 1、sqlmap简介 sqlmap 是一款开源的渗透测试工具&#…

主从Reactor服务器

目录: 目录: 目标: 本文讲解思路: 各模块的功能以及代码: 1.服务器相关模块:服务器模块的功能是对所有的连接以及线程进⾏管理 2.协议相关模块:协议模块是对当前的Reactor模型服务器提供应…

全球排名第一的质量管理(QMS)系统介绍,100%免费开源

什么是Odoo全程质量管理? 开源智造Odoo免费开源质量管理系统将政策、标准和实践规范化并自动化,以最小的开销提供最高质量的产品。快速轻松地选择要执行的测试,设置参数以评估结果,并定义接收时和生产过程中的测试策略。Odoo会自动…

Vue 快速入门:Vue初级

语法规则 前端渲染 渲染有几种方式:原生js、js模板、Vue模板语法 原生js 使用字符串拼接 js模板语法 Vue.js 模板语法概述 Vue.js 是一个用于构建用户界面的渐进式框架,其模板语法非常灵活和直观。Vue 的模板语法基于 HTML,可以通过指令…

达梦sql中参数个数太多导致出现SOH等特殊字符报错无效的序列号是不是达梦的bug

mybatis的Mapper.xml中如下: in中的参数大概有1万6千多个,分成每1000个一组拼接成sql,然而在达梦中执行时报如下: Caused by: dm.jdbc.driver.DMException: Invalid sequence noat dm.jdbc.driver.DBError.throwException(DBError.java:710)…