InternLM-XComposer2-4KHD开拓性的4K高清视觉-语言模型

大型视觉-语言模型(LVLM)在图像字幕和视觉问答(VQA)等任务中表现出色。然而,受限于分辨率,这些模型在处理包含细微视觉内容的图像时面临挑战。

分辨率的限制严重阻碍了模型处理含有丰富细节的图像的能力。例如,在理解图表、表格和文档等类型的视觉内容时,细节的清晰度对于准确解读和生成语言描述至关重要。然而,当图像的分辨率不足时,这些细微的视觉信息可能会丢失,导致模型无法准确地捕捉和学习图像中的关键细节。

现有模型通常只能在一个预先设定的分辨率范围内工作,这限制了它们的适用性和灵活性。在现实世界的应用场景中,需要处理的图像分辨率千差万别,从低分辨率的缩略图到高分辨率的专业图像都有。如果模型不能适应不同分辨率的输入,就无法满足多样化的业务需求,也无法在更广泛的视觉任务中发挥作用。

固定分辨率的处理方式也意味着在面对超高清图像时,模型可能需要对输入图像进行压缩,从而丢失重要的视觉信息,或者在处理低分辨率图像时,模型的计算资源没有得到充分利用。

InternLM-XComposer2-4KHD模型正是在这样的背景下应运而生,它通过一系列创新的技术手段,显著提升了LVLM在高分辨率图像处理方面的能力。

方法

模型架构设计

InternLM-XComposer2-4KHD模型的架构设计是其高性能的关键因素之一。该模型的架构建立在InternLM-XComposer2的基础之上,进行了针对性的扩展和改进,以支持高达4K HD分辨率的图像处理。包括以下三个核心组成部分:

轻量级视觉编码器:OpenAI ViT-Large/14

视觉编码器的作用是将输入的图像转换为模型能够理解的特征表示。InternLM-XComposer2-4KHD使用了OpenAI的ViT-Large/14作为其视觉编码器。ViT,即Vision Transformer,是一种基于Transformer架构的视觉模型,它通过将图像分割成一系列的小块(patches),然后将这些小块线性嵌入到一个高维空间中,从而实现对图像的有效编码。ViT-Large/14表示使用了14层Transformer结构的较大型号ViT,这为模型提供了强大的视觉特征提取能力。

大语言模型:InternLM2-7B

语言模型是处理和生成文本的核心组件。InternLM-XComposer2-4KHD采用了InternLM2-7B作为其语言模型,这是一个拥有7亿参数的大型Transformer模型。这个模型不仅能够捕捉到语言的复杂结构和语义,还能够支持多模态任务中的文本生成和理解。通过与视觉编码器的输出相结合,InternLM2-7B能够提供对图像内容的深入理解和准确的语言描述。

部分LoRA对齐:特征对齐

为了实现视觉编码器和语言模型之间的有效对齐,InternLM-XComposer2-4KHD引入了部分LoRA(Low-Rank Adaptation)技术。LoRA是一种参数效率的适配方法,它通过对模型的一小部分参数进行调整,而不是对整个模型进行训练,从而实现对模型的优化。在InternLM-XComposer2-4KHD中,LoRA技术被用来对齐视觉特征和语言特征,确保了两种模态之间的信息能够有效地交互和整合。

这三个组件共同构成了InternLM-XComposer2-4KHD的架构,使其能够处理高分辨率的图像,并在多种视觉-语言任务中表现出色。通过这种设计,模型不仅能够理解和生成与图像内容紧密相关的语言描述,还能够在保持计算效率的同时,处理比以往任何模型都要高分辨率的图像输入。

动态图像分割策略

为了解决高分辨率图像的处理问题,该模型采用了动态图像分割策略。这一策略允许模型接收不同分辨率的图像输入,并能够根据图像的最大补丁数H动态调整图像的分割方式。具体来说,输入图像被调整并填充到一个以336×336大小为单位的网格中,同时保持图像的原始宽高比。这一过程确保了图像的细节信息不会因为固定的输入尺寸而丢失。

预训练阶段

在预训练阶段,模型使用了三种不同目标的数据集,以增强模型在一般语义对齐、世界知识对齐和视觉能力方面的性能。预训练使用了OpenAI CLIP ViT-L-14-336作为视觉编码器,并采用了动态图像分割策略中的‘HD-25’设置,以此来处理高分辨率的图像输入。

预训练过程涉及将图像分割成多个小块,并从每个块中提取特征。这些特征随后被合并,并与语言模型的输出相结合。训练过程中,模型学习将视觉特征与相应的文本描述相匹配,以此来理解图像内容及其对应的语言表述。

4KHD监督微调

在预训练之后,模型通过4KHD监督微调进一步增强了对高分辨率图像的理解能力。这一步骤特别针对OCR相关任务,这些任务对文本的清晰度和细节有更高的要求。微调过程中,模型采用了混合分辨率训练策略,对于需要极高分辨率的任务,如高清OCR问答,模型会使用‘HD-55’设置来输入4K(3840×1600)分辨率的图像。而对于其他任务,模型则采用了动态分辨率策略,以增强对输入分辨率变化的鲁棒性。

创新点说明

InternLM-XComposer2-4KHD模型的创新之处在于其对高分辨率图像的处理能力、动态分辨率适应性以及全局-局部格式的理解方法。这些创新点共同推动了大型视觉-语言模型(LVLM)在图像理解方面的进步,特别是在处理高分辨率和结构化图像的任务中。

模型的高分辨率处理能力是其最显著的创新之一。InternLM-XComposer2-4KHD能够处理高达4K HD分辨率的图像,这在当时的LVLM中是前所未有的。与只能处理较低分辨率图像的现有模型相比,该模型可以捕捉到更多的视觉细节,这对于理解图像中的复杂场景和细微元素至关重要。这种处理能力使得模型在高清OCR任务、详细文档扫描和复杂图表理解等方面具有显著优势。

模型采用了动态分辨率技术,可以根据输入图像的尺寸和宽高比,自动调整图像的分割方式。这种自适应分辨率的能力,使得模型可以灵活地处理不同分辨率的图像,而不需要对每种分辨率进行单独的训练或调整。此外,模型还能够自动配置补丁的数量和布局,这是通过在预训练的Vision Transformer(ViT)基础上进行的,ViT能够根据图像的内容和结构,动态地调整补丁的划分,从而优化模型对图像特征的提取。

模型引入了全局-局部格式的理解方法,这在处理结构化图像方面尤为重要。全局视图允许模型首先获取图像的整体上下文信息,而局部视图则使得模型能够分别处理图像的各个部分。通过动态图像分割策略,模型将图像分割成多个小块(patches),并分别提取每个小块的特征。这种结合全局和局部信息的方法,使得模型能够更全面地理解图像的结构和内容,特别是在理解文档、图表和表格等结构化图像时,这种方法显示出了其独特的优势。

实验结果

实验结果显示,InternLM-XComposer2-4KHD在10个基准测试中的表现达到了或超过了GPT4V和Gemini Pro。这一结果证明了InternLM-XComposer2-4KHD在处理高分辨率图像方面的显著优势。尤其是在高清OCR任务中,模型展现出了卓越的性能,这归功于其能够处理高达4K分辨率图像的能力。

InternLM-XComposer2-4KHD与闭源API和先前开源SOTA模型的比较显示,InternLM-XComposer2-4KHD在多个基准测试中取得了SOTA结果,尤其是在DocVQA和ChartQA上,其性能超过了GPT-4V和Gemini-Pro。与开源SOTA方法进行了比较,显示了InternLM-XComposer2-4KHD在大多数基准测试中的优越性能。

高分辨率任务的性能评估展示了InternLM-XComposer2-4KHD在处理高分辨率图像方面的显著优势,尤其是在OCR相关任务上。

当推理时使用的图像分辨率高于训练时使用的分辨率时,模型在处理文本相关任务时的性能有所提升。例如,在InfographicVQA任务中,当从HD9(较低分辨率)切换到HD16(较高分辨率)进行推理时,模型的性能提升了8.1%,而无需额外的训练。这一发现指出,即使在训练阶段未达到最高分辨率,通过在推理阶段提高图像分辨率,模型仍能够更好地捕捉图像中的文本信息,从而提高其对文本的理解能力。

全局视图对于模型在多个基准测试中的性能至关重要。当全局视图被移除时,模型在所有基准测试中的表现都有所下降,例如在MMBench EN-Test中的性能下降了4.4%。这表明全局视图为模型提供了一个整体的图像上下文,有助于模型更好地理解和解释图像内容。

论文链接:https://arxiv.org/abs/2404.06512

Github 地址:https://github.com/InternLM/InternLM-XComposer

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/625164.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

推荐5个实用的工具软件,提高效率

​ 现在,有很多实用的工具和软件可以帮助我们更高效地完成各种任务。以下是几个值得推荐的工具和软件,能够极大地提高我们的工作效率。 1.浏览器插件——SuperCopy ​ SuperCopy是一款浏览器插件,主要用于增强网页文本的复制功能。它解决了…

SQL注入工具sqlmap安装使用详解靶场实验

★★免责声明★★ 文章中涉及的程序(方法)可能带有攻击性,仅供安全研究与学习之用,读者将信息做其他用途,由Ta承担全部法律及连带责任,文章作者不承担任何法律及连带责任。 1、sqlmap简介 sqlmap 是一款开源的渗透测试工具&#…

主从Reactor服务器

目录: 目录: 目标: 本文讲解思路: 各模块的功能以及代码: 1.服务器相关模块:服务器模块的功能是对所有的连接以及线程进⾏管理 2.协议相关模块:协议模块是对当前的Reactor模型服务器提供应…

全球排名第一的质量管理(QMS)系统介绍,100%免费开源

什么是Odoo全程质量管理? 开源智造Odoo免费开源质量管理系统将政策、标准和实践规范化并自动化,以最小的开销提供最高质量的产品。快速轻松地选择要执行的测试,设置参数以评估结果,并定义接收时和生产过程中的测试策略。Odoo会自动…

Vue 快速入门:Vue初级

语法规则 前端渲染 渲染有几种方式:原生js、js模板、Vue模板语法 原生js 使用字符串拼接 js模板语法 Vue.js 模板语法概述 Vue.js 是一个用于构建用户界面的渐进式框架,其模板语法非常灵活和直观。Vue 的模板语法基于 HTML,可以通过指令…

达梦sql中参数个数太多导致出现SOH等特殊字符报错无效的序列号是不是达梦的bug

mybatis的Mapper.xml中如下: in中的参数大概有1万6千多个,分成每1000个一组拼接成sql,然而在达梦中执行时报如下: Caused by: dm.jdbc.driver.DMException: Invalid sequence noat dm.jdbc.driver.DBError.throwException(DBError.java:710)…

号卡极团分销管理系统 ue_serve.php 任意文件上传漏洞复现

0x01 产品简介 号卡极团分销管理系统,同步对接多平台,同步订单信息,支持敢探号一键上架,首页多套UI+商品下单页多套模板,订单查询支持实时物流信息、支持代理商自定义域名、泛域名绑定,内置敢探号、172平台、号氪云平台第三方接口以及号卡网同系统对接! 0x02 漏洞概述…

web入门练手案例(一)

下面是一下web入门案例和实现的代码,带有部分注释,倘若代码中有任何问题或疑问,欢迎留言交流~ 新闻页面 案例描述: 互联网的发展使信息的传递变得方便、快捷,浏览新闻称为用户获取信息的重要渠道。下面将实现一个简…

【doghead】mac与wsl2联通

mbp 设置为发送端,那么要能与windows上 wsl2的ubutnu通信。 mbp的 uv 构建ok zhangbin@zhangbin-mbp-2  ~/tet/Fargo/zhb-bifrost/Bifrost-202403/worker/third_party/libuv   main clion使用lldb cmake构建 更新git2.45.0啊

从零开始开发企业培训APP:在线教育系统源码剖析

今天,小编将深入剖析企业培训APP的开发,从零开始为企业构建一个高效、实用的在线教育系统。 一、需求分析 1.主要功能需求 包括但不限于: -用户管理 -课程管理 -学习计划 -互动功能 -考核评估 -统计分析 二、技术选型 1.前端技术 …

将jar打包成exe可安装程序,并在html页面唤醒

一、exe4j将jar打包成exe 1.exe4j下载 下载地址:https://www.ej-technologies.com/download/exe4j/files 2.exe4j打包jar 2.1. welcome 可以选择历史配置,新增则直接下一步 2.2. project type选择“jar in exe” mode 2.3. application info设置应用…

17-LINUX--线程与fork()

一.多线程程序fork() 多线程出现fork()后&#xff0c;只复制一条执行路径&#xff0c;是fork()所在的那条执行路径 主程序fork()示例代码&#xff1a; include<stdio.h> #include<stdlib.h> #include<string.h> #include<pthread.h> #include<un…

港股大反攻结束了吗?

‘港股长线见顶了吗&#xff1f;今天开盘就是最高点&#xff0c;然后一路跳水&#xff0c;市场又是一片恐慌。到底是健康的技术性回调&#xff0c;还是市场已经见顶&#xff1f; 港股此轮“大反攻”中&#xff0c;科网股表现十分亮眼。今日港股盘后&#xff0c;阿里巴巴、腾讯…

MySQL表的增删改查(1)

目录 一. . 新增 insert 1.简单方法 2. 指定列插入 3. 一次插入多行记录 二. 查询 select 1.最简单的查询, 全列查询 2. 指定列查询 ​编辑 3. 表达式查询 1)简单表达式查询 2)带别名的表达式查询 4. 去重查询 5. 带有排序的查询 1)单个列排序 2)多个列排序: ​…

Arduino-ILI9341驱动-SPI接口TFTLCD实现触摸功能系列之触控开关二

Arduino-ILI9341驱动-SPI接口TFTLCD实现触摸功能系列之触控开关二 1.概述 这篇文章在触摸屏上绘制一个开关&#xff0c;通过点击开关实现控制灯的开关功能。 2.硬件 硬件连接参考第一篇文章介绍 Arduino-ILI9341驱动-SPI接口TFTLCD实现触摸功能系列之获取触控坐标一 3.实现…

JETBRAINS IDES 分享一个2099通用试用码,支持一键升级!CLion 2024 版

文章目录 废话不多说上教程&#xff1a;&#xff08;动画教程 图文教程&#xff09;一、动画教程激活 与 升级&#xff08;至最新版本&#xff09; 二、图文教程 &#xff08;推荐&#xff09;Stage 1.下载安装 toolbox-app&#xff08;全家桶管理工具&#xff09;Stage 2 : 下…

一直可以正常 git push 代码,突然就不行了,提示端口22错误,访问超时!

大家好&#xff0c;我是 Just&#xff0c;这里是「设计师工作日常」&#xff0c;今天分享的是当使用 git 时&#xff0c;突然提示端口错误&#xff0c;然后访问超时&#xff0c;我解决的过程以及最后的解决方案。 最新文章通过公众号「设计师工作日常」发布。 目录 不好意思&a…

手撕C语言题典——环形链表的约瑟夫问题

目录 前言 一.故事背景 二.题目 ​编辑三.思路 1&#xff09;数组 ​编辑2&#xff09; 循环链表 四.代码实现 搭配食用更佳哦~~ 数据结构之单单单——链表-CSDN博客 数据结构之单链表的基本操作-CSDN博客 前面学了单链表的相关知识&#xff0c;我们来尝试做一下关于…

用友hr软件统一认证与致远OA单点登录身份周期管理怎么做

一、引言 随着企业信息化建设的深入&#xff0c;各类管理软件如用友HR、致远OA等已经成为事业单位日常运营不可或缺的工具。用友HR软件以其强大的人力资源管理功能&#xff0c;帮助企事业单位实现员工信息的集中管理&#xff1b;而致远OA则以其便捷的办公流程管理&#xff0c;…

数据中心网络随想-电路交换

数据中心网络扩容并不容易&#xff0c;涉及设备上架&#xff0c;切换等又硬又大的动作&#xff0c;期间对所有应用都会产生影响&#xff0c;所以理论上 “加钱加硬件” 这种看起来很简单的事实际上真不如 “写一个随时部署升级的端到端拥塞控制算法” 更容易实施。 傍晚绕小区…