数据结构——双链表

我宁愿靠自己的力量,打开我的前途,而不愿求有力者垂青 

文章目录

双线向链表各接口函数名或变量名 

双向链表接口实现源码

快速索引【头文件及函数声明】

双向链表接口实现

双向链表的构造分析

双向链表的定义及初始化

双向链表的插入和删除


往期回顾:

数据结构——单链表

数据结构——顺序表

  大家好,我是纪宁。

  这篇文章向大家介绍一种相对单链表性能更优的链表——双向链表,它能更高效的实现数据的插入、删除和查找等。

  文章前半段是双向链表对应名称和源码,文章后半段是对双向链表实现的具体解释。

双线向链表各接口函数名或变量名 

LTDataType双向链表数据类型重命名
ListNode双向链表结构体
LTNode双向链表的重命名
BuyLTNode创建一个结点
LTInit初始化结点
LTPrint打印双向链表
LTPushBack尾插
LTPopBack尾删
LTPushFront头插
LTPopFront头删
LTSize计算双向链表元素个数
LTFind找链表元素
LTInsert在pos之前插入结点
LTErase删除pos位置的结点

双向链表接口实现源码

快速索引【头文件及函数声明】

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
typedef int LTDataType;//重命名

typedef struct ListNode
{
	LTDataType Data;
	struct ListNode* next;
	struct ListNode* prev;
}LTNode;
LTNode* BuyLTNode(LTDataType x); //创建一个新节点
LTNode* LTInit(); //哨兵位的头结点
void LTPrint(LTNode*phead);//打印双链表
void LTPushBack(LTNode* phead, LTDataType x);//尾插
void LTPopBack(LTNode* phead);//尾删
void LTPushFront(LTNode* phead, LTDataType x);//头插
void LTPopFront(LTNode* phead);//头删
LTNode* LTFind(LTNode* phead, LTDataType x);//寻找结点
void LTInsert(LTNode*phead,LTNode* pos, LTDataType x); //在pos之前插入结点

双向链表接口实现

LTNode* BuyLTNode(LTDataType x)
{
	LTNode* nownode =(LTNode*)malloc(sizeof(LTNode));
	if (nownode == NULL)
	{
		perror("malloc fail");
	}
	nownode->Data = x;
	nownode->next = NULL;
	nownode->prev = NULL;
	return nownode;
}

LTNode* LTInit()
{
	LTNode* phead = BuyLTNode(0);
	phead->next = phead;
	phead->prev = phead;
	return phead;
}

void LTPushBack(LTNode* phead, LTDataType x)
{
	assert(phead);
	LTNode* tail = phead->prev;
	LTNode* nownode = BuyLTNode(x);
	nownode->next = phead;
	nownode->prev = tail;
	tail->next = nownode;
	phead->prev = nownode;
}

void LTPrint(LTNode* phead)
{
	assert(phead);
	printf("phead<=>");
	LTNode* cur = phead;
	while (cur->next!=phead)
	{
		printf("%d<=>", cur->next->Data);
		cur = cur->next;
	}
	printf("\n");
}

void LTPopBack(LTNode* phead)
{
	assert(phead);
	assert(phead->next != phead);//只有哨兵位的时候不能删
	LTNode* tail = phead->prev;
	LTNode* tailPrev = tail->prev;
	tailPrev->next = tail->next;
	phead->prev = tailPrev;
	free(tail);
}
void LTPushFront(LTNode* phead, LTDataType x)
{
	assert(phead);
	LTNode* first = phead->next;
	LTNode* nownode = BuyLTNode(x);
	nownode->next = first;
	nownode->prev = phead;
	phead->next = nownode;
	first->prev = nownode;
}

void LTPopFront(LTNode* phead)
{
	assert(phead);
	assert(phead->next != phead);//只有哨兵位的时候不能删除
	LTNode* first = phead->next;
	LTNode* second = first->next;
	phead->next = second;
	second->prev = phead;
	free(first);
}

LTNode* LTFind(LTNode* phead, LTDataType x)
{
	assert(phead);
	LTNode* cur = phead;
	while (cur->next != phead)
	{
		if (cur->next->Data == x)
			return  cur->next;
		cur = cur->next;
	}
	return NULL;
}

void LTInsert(LTNode* phead, LTNode* pos, LTDataType x)
{
	assert(phead);
	assert(pos);
	LTNode* cur = phead;
	while (cur->next != pos)
	{
		cur = cur->next;
	}
	LTNode*nownode = BuyLTNode(x);
	nownode->next = pos;
	nownode->prev = cur;
	cur->next = nownode;
	pos->prev = nownode;
}

void LTErase(LTNode* phead, LTNode* pos)
{
	assert(pos&&phead);
	assert(pos->next != pos);
	assert(phead->next != phead);
	LTNode* cur = phead;
	LTNode* posNext = pos->next;
	while (cur->next != pos)
	{
		cur = cur->next;
	}
	cur->next = posNext;
	posNext->prev = cur;
	free(pos);
}

双向链表的构造分析

  双向链表,相对于单链表不同的是双向链表的节点有两个指针域,一个指向后一个节点,另一个指向前一个节点,默认双向链表都是有带哨兵位的头节点,哨兵位的头节点中储存着第一个有效节点的地址(phead->next)和最后一个有效节点的地址(phead->prev)。

单双链表逻辑图对比

单双链表物理图对比

双向链表的定义及初始化

  双向链表中有一个数据域和两个指针域,一个指针指向下一个节点的地址,一个指针指向上一个节点的地址,将这个双链表的结构再重命名。

  双向链表在新开辟节点的时候,要先开辟一个节点大小的空间,将它的 next 和 NULL 指向空,然后将它的数据域值赋为 x。

双向链表的插入和删除

  双向链表的删除,首先要要明确的一点是不能删除哨兵位这个头节点,因为它是整个双向链表的结构支撑。删除的时候,要找到即将删除节点的上一个节点和下一个节点,将上一个节点的 next 指针指向下一个节点,将下一个节点的 prev 指针指向 上一个节点。最后,将删除的节点空间释放。

  双向链表的插入,在插入的时候,理论上在任何位置都是可以插入节点的。因为在初始化的时候,定义新创建节点的指针域都为空。所以在插入的时候,要改变插入节点的两个指针域,将它的next 指针指向下一个节点,将它的 prev 指针指向上一个节点。同样,将上一个节点的 next 指针指向这个新节点,将下一个指针的 prev 指针指向这个新节点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/62443.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

音频客观感知MOS对比,对ViSQOL、PESQ、MosNet(神经网络MOS分)和polqa一致性对比和可信度验证

原创&#xff1a;转载需附链接&#xff1a; https://blog.csdn.net/qq_37100442/article/details/132057139?spm1001.2014.3001.5502 一、背景 Mos分评价音质重要指标&#xff0c;最近也有很多机构和公司在研究适合自己的评价体系。目前Mos分主要分为主观评测和客观感知评价。…

智能仪表板DevExpress Dashboard v23.1亮点 - 增强对自定义导出的支持

DevExpress Dashboard v23.1版本增强了自定义导出到Excel的功能等&#xff0c;欢迎下载最新版本体验&#xff01; DevExpress Dashboard v23.1正式版下载(Q技术交流&#xff1a;523159565&#xff09; 所有平台 导出自定义仪表板项目到Excel 用户现在可以在WinForms和Web应…

危大工程智慧工地源码,微服务+Java+Spring Cloud +UniApp +MySql 物联网、人工智能、视频AI分析

一套智慧工地管理平台源码&#xff0c;PC端移动APP端可视货数据管理端源码 智慧工地可视化系统利用物联网、人工智能、云计算、大数据、移动互联网等新一代信息技术&#xff0c;通过工地中台、三维建模服务、视频AI分析服务等技术支撑&#xff0c;实现智慧工地高精度动态仿真&a…

C++ 多线程:std::future

std::future std::future 简介示例1博客引用来源 std::future 简介 我们前面介绍的std::thread 是C11中提供异步创建多线程的工具&#xff0c;只能是异步运行任务&#xff0c;却无法获取任务执行的结果&#xff0c;一般都是依靠全局对象&#xff0c;全局对象在多线程下是及其不…

4 三组例子,用OpenCV玩转图像-AI-python

读取&#xff0c;缩放&#xff0c;旋转&#xff0c;写入图像 首先导入包&#xff0c;为了显示导入matplotlib/为了在matplotlib显示 导入CV2/查看版本 导入图片/查看图片类型 图片数组 数组大小 对于opencv通道顺序蓝色B、绿色G、红色R matplotlib通道顺序为 红色R、绿色G、蓝…

快速修复应用程序中的问题的利器—— Android热修复

热修复技术在Android开发中扮演着重要的角色&#xff0c;它可以帮助开发者在不需要重新发布应用程序的情况下修复已经上线的应用程序中的bug或者添加新的功能。 一、热修复是什么&#xff1f; 热修复&#xff08;HotFix&#xff09;是一种在运行时修复应用程序中的问题的技术…

彻底弄清楚Minor GC和Major GC及Full GC

系列资源汇总 https://gitee.com/xiayi/java-docs 每日一句 每一日你所付出的代价都比前一日高&#xff0c;因为你的生命又消短了一天&#xff0c;所以每一日你都要更用心。 前提概要 对于JVM而言&#xff0c;最难能够掌握的就是GC回收部分的研究和探索。 而对于虚拟机而言根据…

前端页面--视觉差效果

代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><link rel"stylesheet" href"https://un…

如何实现基于场景的接口自动化测试用例?

自动化本身是为了提高工作效率&#xff0c;不论选择何种框架&#xff0c;何种开发语言&#xff0c;我们最终想实现的效果&#xff0c;就是让大家用最少的代码&#xff0c;最小的投入&#xff0c;完成自动化测试的工作。 基于这个想法&#xff0c;我们的接口自动化测试思路如下…

【Linux】【预】配置网络IP,挂载网络目录

【Linux】【预】配置网络IP&#xff0c;挂载网络目录 1. 配置查看IP2.配置Linux中的IP3. 串口连接开发板&#xff0c;配置 1. 配置查看IP a . 查看ipifconfig如下操作&#xff0c;其中的&#xff1a;192.168.252.140就是它的IP b . 使用xmodem 连接到虚拟机&#xff0c;最后点…

Docker搭建zookeeper

问题背景 前言 本文参考自&#xff1a;docker-compose快速搭建Zookeeper集群还有一种更加详细更加全面的部署方式&#xff1a;Docker之docker-compose一键部署Zookeeper集群&#xff0c;但笔者还未验证&#xff0c;先记录下来 搭建 安装docker-ce 此处不赘述 安装docker-co…

Docker快速入门笔记

Docker快速入门 前言 当今软件开发领域的一股热潮正在迅速兴起&#xff0c;它融合了便捷性、灵活性和可移植性&#xff0c;让开发者们欣喜若狂。它就是 Docker&#xff01;无论你是一个初学者&#xff0c;还是一位经验丰富的开发者&#xff0c;都不能错过这个引领技术浪潮的工…

MYSQL进阶-事务的基础知识

1.什么是数据库事务&#xff1f; 就是把好几个sql语句打包成一个整体执行&#xff0c;要么全部成功&#xff0c;要么全部失败&#xff01;&#xff01;&#xff01; 事务是一个不可分割的数据库操作序列&#xff0c;也是数据库并发控制的基本单位&#xff0c;其执 行的结果必…

03_012slab块分配器,管理内核内存分配,管理高速缓存

物理背景 为什么会有缓存cache 在最初开发ARM架构时&#xff0c;处理器的时钟速度和内存的访问速度大致相同。今天的处理器内核要复杂得多&#xff0c;其时钟速度可以快上几个数量级。但是&#xff0c;外部总线和内存设备的频率并没有扩大到同样的程度。有可能实现小块的片上S…

搭建SVN服务器

简介 SVN&#xff08;Subversion&#xff09;是一种版本控制工具&#xff0c;用于管理和跟踪文件的修改历史。它可以帮助团队协作开发&#xff0c;方便地共享和更新代码&#xff0c;同时也可以提供备份和安全控制功能。 使用SVN&#xff0c;你可以创建中央代码库&#xff08;…

【MySQL】对表中数据的操作

本期给大家带来的是MySQL下对表中数据的增删查改操作 目录 一、对表插入数据 1.1 单行数据插入 1.2 多行数据插入 1.3 插入冲突时更新数据 1.4 替换式插入 1.5 插入查询结果 二、对表中数据进行查询 2.1 基本select 2.1.1 使用select查询表中数据 2.1.2 使用select…

内存快照:宕机后,Redis如何实现快速恢复?RDB

AOF的回顾 回顾Redis 的AOF的持久化机制。 Redis 避免数据丢失的 AOF 方法。这个方法的好处&#xff0c;是每次执行只需要记录操作命令&#xff0c;需要持久化的数据量不大。一般而言&#xff0c;只要你采用的不是 always 的持久化策略&#xff0c;就不会对性能造成太大影响。 …

Godot 4 源码分析 - 碰撞

碰撞功能应该是一个核心功能&#xff0c;它能自动产生相应的数据&#xff0c;比如目标对象进入、离开本对象的检测区域。 基于属性设置&#xff0c;能碰撞的都具备这样的属性&#xff1a;Layer、Mask. 在Godot 4中&#xff0c;Collision属性中的Layer和Mask属性是用于定义碰撞…

任务12、Quality指令加持,Midjourney生成电影级数码作品

12.1 任务概述 本次实验任务旨在帮助你掌握Midjourney AI绘画中的Quality指令。通过深入介绍Quality指令的概念和作用,我们将解释为什么它在绘画中至关重要。通过测试不同的Quality参数对绘画效果的影响,并提供实战演示,你将学会如何在Midjourney中设置Quality参数以达到更…

使用uni-app的uniCloud 云数据库入门:实现一个简单的增删改查

官方云数据库文档 前置步骤使用uni-app新建一个uniCloud项目 [外链图片转存失败,源站可能有防盗官方云数据库文档]!链机制,建议将()https://uniapp.dcloud.net.cn/uniCloud/hellodb.html)] 新建表 这里我加了几个测试字段 createTime、remark、money // 文档教程: https://un…