【JavaEE精炼宝库】多线程1(认识线程 | 创建线程 | Thread 类)

目录

一、认识线程

1.1 线程的概念:

1.2 为什么需要线程:

1.3 面试题.谈谈进程和线程的区别:

1.4 Java的线程和操作系统线程的关系:

二、创建线程

2.1 创建线程的5种写法:

2.1.1 写法1.继承 Thread 类:

2.1.2 写法2.实现 Runnable 接口:

2.1.3 写法3.继承 Thread 使用匿名内部类:

2.1.4 写法4.实现 Runnable 使用匿名内部类:

2.1.5 写法5.使用lambda(推荐写法):

2.2 run方法和start方法的区别:

2.3 多线程的优势:

三、Thread类及常见方法

3.1 Thread 的常见构造方法:

3.2 jconsole使用过程:

3.3 Thread的常见属性:

3.3.1 属性列表:

3.3.2 前后台线程的关系:


一、认识线程

1.1 线程的概念:

一个线程就是一个 "执行流" 。每个线程之间都可以按照顺序执行自己的代码。多个线程之间 "同时" 执行着多份代码。

1.2 为什么需要线程:

(1)首先经过多年的发展,“并发编程” 已成成为 “刚需”。

• 单核CPU的发展遇到了瓶颈.要想提高算力,就需要多核CPU.而并发编程能更充分利用多核CPU资源。

 • 有些任务场景需要 "等待IO",为了让等待IO的时间能够去做一些其他的工作,也需要用到并发编程。

(2)其次,虽然多进程也能实现并发编程,但是线程比进程更轻量。

• 创建线程比创建进程更快。

• 销毁线程比销毁进程更快。

• 调度线程比调度进程更快。

(3)最后线程虽然比进程轻量,但是人们还不满足,于是又有了 "线程池" (ThreadPool)和 "协程"  (Coroutine)。

本文章主要介绍多线程,有关线程池和协程的概念后续会单独再写文章解释。

1.3 面试题.谈谈进程和线程的区别:

主要有如下四点:

• 进程是包含线程的。每个进程至少有⼀个线程存在,即主线程。

• 进程和进程之间不共享内存空间。同⼀个进程的线程之间共享同⼀个内存空间。

• 进程是系统分配资源的最小单位,线程是系统调度的最小单位。

• 一个进程挂了一般不会影响到其他进程。但是一个线程挂了,可能把同进程内的其他线程一起带走(整个进程崩溃)。

1.4 Java的线程和操作系统线程的关系:

线程是操作系统中的概念。操作系统内核实现了线程这样的机制,并且对用户层提供了一些API供用户使用(例如Linux的pthread库)。

Java标准库中Thread类可以视为是对操作系统提供的API进行了进一步的抽象和封装。

二、创建线程

下面我会提供创建线程的常见的5中写法,希望友友们都要掌握。下面经常会用到run方法和start方法,关于它们的区别,大家可以先把这5中写法看完后,我在后面有写区别🤩🤩🤩。

2.1 创建线程的5种写法:

2.1.1 写法1.继承 Thread 类:

继承 Thread 来创建⼀个线程类。写法如下:

class MyThread extends Thread{
    @Override
    public void run() {
        System.out.println("hello Thread");
        System.out.println("Thread end");
    }
}
public class demo1 {
    public static void main(String[] args) {
        Thread t = new MyThread();//向上转型
        t.start();//启动线程
    }
}

这里解释一下为什么不能直接直接创建一个Thread对象,而是要再写一个Thread的子类:这是因为我们要重写 run 方法,如果不重写,直接调用原生的,会达不到我们的预期,这显然不是我们想看到的。

运行结果:

2.1.2 写法2.实现 Runnable 接口:

• Runnable接口源码:

通过观察其源码我们不难发现这是一个 “函数式接口” ,所以我们后面有一种写法就会利用到lambda表达式,里面涉及到的一些 “变量捕获” 的知识如果友友忘了的话要记得复习呀。

这个相比于第一个写法的好处是:能够起到解耦合的作用,例如当前是通过多线程的方式执行的,未来也可以很方便改成基于线程池的方式执行,也可以改成基于虚拟线程的方式执行(改动成本比较小),而继承Thread的写法基本就只适用于多线程。具体写法如下:

class MyRunnable implements Runnable{
    @Override
    public void run() {
        System.out.println("hello Thread");
        System.out.println("Thread end");
    }
}
public class demo2 {
    public static void main(String[] args) {
        Thread t = new Thread(new MyRunnable());
        t.start();
    }
}

运行结果: 

2.1.3 写法3.继承 Thread 使用匿名内部类:

这个写法的效果和 2.1 的写法效果没有任何区别,因为使用匿名内部类本来就是为了方便。具体写法如下:

public class demo3 {
    public static void main(String[] args) {
        Thread t = new Thread(){
            @Override
            public void run() {
                System.out.println("hello Thread");
                System.out.println("Thread end");
            }
        };
        t.start();
    }
}

运行结果和前面一样就不贴了。

2.1.4 写法4.实现 Runnable 使用匿名内部类:

和写法2效果一样:

public class demo4 {
    public static void main(String[] args) {
        Thread t = new Thread(new MyRunnable(){
            @Override
            public void run() {
                System.out.println("hello Thread");
                System.out.println("Thread end");
            }
        });
        t.start();
    }
}

2.1.5 写法5.使用lambda(推荐写法):

这个是比较推荐的写法,因为是 “函数式接口” 我们就可以使用lambda表达式来简化写法。具体写法如下:

public class demo5 {
    public static void main(String[] args) {
        Thread t = new Thread(()->{
            System.out.println("hello Thread");
            System.out.println("Thread end");
        });
        t.start();
    }
}

 上述 5 种写法本质都是要把线程执行的任务内容表示出来,通过 Thread 的 start 来创建 / 启动系统中的线程。Thread 对象和操作系统内核中的线程是一一对应的关系。 

2.2 run方法和start方法的区别:

之前我们已经看到了如何通过覆写 run 方法创建一个线程对象,但线程对象被创建出来并不意味着线程就开始运行了。

• 覆写 run 方法是提供给线程要做的事情的指令清单。

• 线程对象可以认为是把 李四、王五叫过来了。

• 而调用 start() 方法,就是喊⼀声:”行动起来!“,线程才真正独立去执行了。

总而言之:调用 start 方法,才真的在操作系统的底层创建出一个线程。

2.3 多线程的优势:

利用多线程在一些场合可以提高程序的运行速度。具体案例如下:

前置知识:

• 使用 System.nanoTime() 可以记录当前系统的 纳秒 级时间戳。

• serial 串行的完成一系列运算。concurrency 使用两个线程并行的完成同样的运算。

如果对串行和并行不了解的话可以前往:JavaEE前置知识 中查看并行与并发的区别。

public class ThreadAdvantage {
    // 多线程并不⼀定就能提⾼速度,可以观察,count 不同,实际的运⾏效果也是不同的
    private static final long count = 10_0000_0000;
    public static void main(String[] args) throws InterruptedException {
        // 使⽤并发⽅式
        concurrency();
        // 使⽤串⾏⽅式
        serial();
    }
    private static void concurrency() throws InterruptedException {
        long begin = System.nanoTime();

        // 利⽤⼀个线程计算 a 的值
        Thread thread = new Thread(new Runnable() {
            @Override
            public void run() {
                int a = 0;
                for (long i = 0; i < count; i++) {
                    a--;
                }
            }
        });
        thread.start();
        // 主线程内计算 b 的值
        int b = 0;
        for (long i = 0; i < count; i++) {
            b--;
        }
        // 等待 thread 线程运⾏结束
        thread.join();

        // 统计耗时
        long end = System.nanoTime();
        double ms = (end - begin) * 1.0 / 1000 / 1000;
        System.out.printf("并发: %f 毫秒%n", ms);
    }
    private static void serial() {
        // 全部在主线程内计算 a、b 的值
        long begin = System.nanoTime();
        int a = 0;
        for (long i = 0; i < count; i++) {
            a--;
        }
        int b = 0;
        for (long i = 0; i < count; i++) {
            b--;
        }
        long end = System.nanoTime();
        double ms = (end - begin) * 1.0 / 1000 / 1000;
        System.out.printf("串⾏: %f 毫秒%n", ms);
    }
}

案例结果如下:

可以看到速度快了两倍多。不使用多线程的并发就会出现 “一核有难,多核围观” 的现象。

三、Thread类及常见方法

Thread 类是 JVM 用来管理线程的一个类,换句话说,每个线程都有一个唯一的 Thread 对象与之关联。

用我们上面的例子来看,每个执行流,也需要有一个对象来描述,类似下图所示,而 Thread 类的对象就是用来描述一个线程执行流的,JVM 会将这些 Thread 对象组织起来,用于线程调度,线程管理。

3.1 Thread 的常见构造方法:

我们最常使用的是第三个,至于第五个目前在实际开发中更多的是被线程池取代了,这里只演示第三个。演示如下:

public class demo6 {
    public static void main(String[] args) {
        Thread t = new Thread(()->{
            while(true){
                System.out.println("hello Thread");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
            }
        },"我的Thread");
        t.start();
        while(true){
            System.out.println("hello Main");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        }
    }
}

我们可以利用使用 jconsole 命令观察线程。

3.2 jconsole使用过程:

我们利用上面的程序来进行连接,连接的时候要保证程序在运行中。

• 打开 c 盘并进入 Program Files :

• 进入 Java 中的 jdk :

• 进入 bin 后找到 jconsole 后以管理员的身份运行它:

•  看到这个就成功找到 jconsole 了:

记得连接我们运行的java程序。

注意:程序一定要保证在运行状态,比如我们写一个while(true)循环来保证我们连接的时候程序在跑,不然我们是连接不到的。

• 查看结果:

点击线程,在下面我们能看到main和我的Thread(修改命名)。

完成上面步骤我们已经成功利用 jconsole 查看运行的 java 线程。

3.3 Thread的常见属性:

3.3.1 属性列表:

属性解释:

• ID 是线程的唯一标识,不同线程不会重复。

• 名称是各种调试工具用到。

• 状态表示线程当前所处的一个情况。

• 优先级高的线程理论上来说更容易被调度到。

• 关于后台线程,需要记住一点:JVM会在一个进程的所有非后台线程结束后,才会结束运行。

• 是否存活,即简单的理解,为 run 方法是否运行结束了。

• 线程的中断问题,下面会单独讲。

3.3.2 前后台线程的关系:

• 前台线程:前台线程如果不运行结束的话,此时 Java 进程是一定不会结束的。

• 后台线程:后台线程即使继续在执行,也不能阻止 Java 进程结束。

我们默认创建的线程都是前台线程。我们可以利用 setDaemon 方法来把线程设置为后台线程。

注意:关于线程的各种属性的设置,都要放在 start 之前,一旦线程已经启动了,那么开弓就没有回头箭,这个时候再设置就来不及了,还会返回一个异常。

测试案例:

public class demo7 {
    public static void main(String[] args) {
        Thread t = new Thread(()->{
            while(true){
                System.out.println("hello Thread");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
            }
        });
        t.setDaemon(true);//把t设置为后台线程
        t.start();//启动线程
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
        System.out.println("Main end");
    }
}

友友们可以把这个代码贴到自己的编译器上面,看看有没有 setDaemon 的区别。

案例效果如下:

结语:

其实写博客不仅仅是为了教大家,同时这也有利于我巩固知识点,和做一个学习的总结,由于作者水平有限,对文章有任何问题还请指出,非常感谢。如果大家有所收获的话还请不要吝啬你们的点赞收藏和关注,这可以激励我写出更加优秀的文章。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/624330.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

codeforces round944(div4)A~F题解

文章目录 [A. My First Sorting Problem](https://codeforces.com/contest/1971/problem/A)[B. Different String](https://codeforces.com/contest/1971/problem/B)[C. Clock and Strings](https://codeforces.com/contest/1971/problem/C)[D. Binary Cut](https://codeforces…

5.10.10 用于图像识别的深度残差学习

1. 介绍 深度卷积神经网络为图像分类带来了一系列突破。深度网络自然地以端到端的多层方式集成低/中/高级特征和分类器&#xff0c;并且特征的“级别”可以通过堆叠层的数量&#xff08;深度&#xff09;来丰富。 学习更好的网络是否像堆叠更多层一样容易&#xff1f; 这个问…

网络工程师----第二十七天

计算机基 第四章&#xff1a;网络层 网络层提供服务的特点&#xff1a;网络层向上只提供简单的、无连接的、尽最大努力交付的数据报服务&#xff0c;不保证可靠通信。 网际协议IP&#xff1a; *地址解析协议ARP(Address Resolution Protocol) *网际控制报文协议ICMP(Inter…

分享一个非常好用的安装包下载网站

当我们需要下载linux下的某些包,以便在自己的环境下进行编译自己的安装包的时候,可能需要用到一些各种版本的依赖包,从网上 百度会很麻烦。 这里分享一个很好用的安装包下载网站,记得点赞收藏 网站: Red Hat Enterprise Linux Repositories - pkgs.org 找到对应系统,然…

【Java的抽象类和接口】

1. 抽象类 1.1 抽象类概念 在面向对象的概念中&#xff0c;所有的对象都是通过类来描绘的&#xff0c;但是反过来&#xff0c;并不是所有的类都是用来描绘对象的&#xff0c;如果 一个类中没有包含足够的信息来描绘一个具体的对象&#xff0c;这样的类就是抽象类。 以上代码中…

4.Jmeter阶梯加压Stepping Thread Group

1. 先去Jmeter下载地址下载PluginsManager&#xff0c;放置在Jmeter的lib/ext 目录下 &#xff0c;重启Jmeter 2. 在插件管理器查找并安装jpgc - Standard Set,重启Jmeter 3.右键测试计划->添加->Threads(Users)->jpgc - Stepping Thread Group 然后设置阶梯加压参数…

【保姆级教程】如何将火爆全网的Kimi接入微信公众号,成为你的专属AI智能客服

【保姆级教程】如何将火爆全网的Kimi接入微信公众号&#xff0c;成为你的专属AI智能客服 在数字化转型的浪潮中&#xff0c;企业越来越重视利用人工智能技术提升客户服务的效率和质量。Kimi 作为一款功能强大的AI智能助手&#xff0c;能够理解自然语言、提供信息搜索、解析网址…

图像/视频恢复和增强CodeFormer

github&#xff1a;https://github.com/sczhou/CodeFormer 尝试增强旧照片/修复人工智能艺术 面部修复 面部色彩增强和恢复 脸部修复

[XYCTF]-PWN:Intermittent解析(pop栈内数据构造shellcode,自己编写shellcode)

查看ida 这里程序只会把输入的前12字节内容移到虚拟地址里&#xff0c;然后执行&#xff0c;大小不足以让执行shellcode&#xff0c;只能用pop寄存器调用read&#xff0c;再把gets hell的shellcode输入进去 完整exp&#xff1a; from pwn import* context(log_leveldebug,arc…

【数据结构】平衡二叉树(插入、查找、删除)解析+完整代码

3.2 平衡二叉树 3.2.1 定义 平衡二叉树&#xff0c;简称平衡树&#xff08;AVL树&#xff09; 树上任一结点的左右子树高度差不超过1。 结点的平衡因子左子树高-右子树高 3.2.2 插入操作 插入结点后&#xff0c;可能造成不平衡 要调整最小不平衡子树&#xff0c;使其恢复平衡。…

Python以docker形式部署,flask简易服务器。

公司大部分都是springboot 服务器&#xff0c;有时候用到python写的一些模型&#xff0c;部署在linux上进行处理 首先项目这样&#xff1a; flask就不说了&#xff0c;快捷服务器&#xff0c; # -*- coding: utf-8 -*-from flask import Flask, request# 实例化Flask对象 app…

齐护K210系列教程(二十六)_口罩检测

口罩检测 1.下载模型1.1使用机器码下载模型1.2将模型文件下载到SD卡1.3 烧录基本固件 2.程序解释3.课程资源联系我们 要实现此程序的功能需要&#xff1a; 支持 kmodelv4 支持固件 人脸口罩检测模型的模型 模型下载地址为&#xff1a;https://maixhub.com/model/zoo/64 机器码…

简单4步教你电脑摄像头怎么打开!

电脑摄像头是现代计算机的一个重要组件&#xff0c;它为我们提供了进行视频通话、视频会议、拍摄照片和录制视频等功能。然而&#xff0c;对于一些用户来说&#xff0c;不清楚电脑摄像头怎么打开。在本文中&#xff0c;我们将介绍几个简单的步骤&#xff0c;帮助您在电脑上轻松…

易康001:易康多尺度分割结果异常

前言 易康是一种在遥感领域常用的数据处理软件&#xff0c;它主要是用于面向对象的分类&#xff0c;涵盖了分割、模糊分类、监督分类等流程。但是在进行多尺度分割时&#xff0c;往往会遇到一些问题&#xff0c;例如下面图片所示&#xff1a; 1 多尺度分割问题 这种问题一般是…

【C++】AVL

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、AVL 树 1.1、AVL树的概念 1.2、AVL树节点的定义 1.3、AVL树的插入 1.4、AVL树的旋转 1.4.1、新节点插入较高左子树的左侧---左左&#xff1a;右单旋 1…

深度论证-高速走线控制100欧姆阻抗一定是最好的选择吗?

高速先生成员--黄刚 对于高速差分信号到底需要控制多少欧姆的阻抗&#xff0c;高速先生相信大部分工程师首先都会看下例如信号的协议文档或者芯片的文档&#xff0c;看看里面有没有推荐的控制阻抗值。例如像PCIE信号&#xff0c;在4.0之后的阻抗会明确要求按照85欧姆来控制&…

240W 宽电压输入 AC/DC 导轨式开关电源——TPR/SDR-240-XS 系列

TPR/SDR-240-XS 导轨式开关电源&#xff0c;额定输出功率为240W&#xff0c;产品输入范围&#xff1a;85-264VAC。提供24V、48V输出&#xff0c;具有短路保护&#xff0c;过载保护等功能&#xff0c;并具备高效率&#xff0c;高可靠性、高寿命、更安全、更稳定等特点&#xff0…

Docker容器中的SSH免密登录

简介&#xff1a;在日常的开发和测试环境中经常需要创建和管理Docker容器。有时&#xff0c;出于调试或管理的目的&#xff0c;可能需要SSH到容器内部。本文将介绍如何创建一个Docker容器&#xff0c;它在启动时自动运行SSH服务&#xff0c;并支持免密登录。 构建支持SSH的Doc…

对于fastjson之rmi利用问题的解决

前言 也是被一个问题困扰了好久&#xff0c;都要崩溃了&#xff0c;就为了一个问题调试半天的代码&#xff0c;最后终于解决了&#xff0c;现在做一个记录&#xff0c;幸好没有放弃&#xff0c;感觉学java是比较慢的&#xff0c;但是学java就是重在分析能力的提升&#xff0c;…

关于使用git拉取gitlab仓库的步骤(解决公钥问题和pytho版本和repo版本不对应的问题)

先获取权限&#xff0c;提交ssh-key 虚拟机连接 GitLab并提交代码_gitlab提交mr-CSDN博客 配置完成上诉步骤之后&#xff0c;执行下列指令进行拉去仓库的内容 sudo apt install repo export PATHpwd/.repo/repo:$PATH python3 "实际路径"/repo init -u ssh://gitxx…