Java根据坐标经纬度计算两点距离(5种方法)、校验经纬度是否在圆/多边形区域内的算法推荐

 

目录

前言

一、根据坐标经纬度计算两点距离(5种方法)

1.方法一

2.方法二

3.方法三

4.方法四

5.方法五

5.1 POM引入第三方依赖

5.2 代码

6.测试结果对比

二、校验经纬度是否在制定区域内

1.判断一个坐标是否在圆形区域内

2.判断一个坐标是否在一个多边形区域内

3.结果

总结


前言

        在开发项目中会用到根据两点坐标计算之间距离的算法,网上也找了很多的方法,多多少少会存在一些问题的。以下方法已经在我本地运行通过,利用百度地图拾取坐标系统和百度地图测距工具进行测试,现将其整理了一下。以供大家参考:


一、根据坐标经纬度计算两点距离

1.方法一

package com.test.java.util;

/**
 * 坐标位置相关util
 */
public class PositionUtil {

    /**
     * 赤道半径(单位:米)
     */
    private static final double EQUATOR_RADIUS = 6378137;

    /**
     * 方法一:(反余弦计算方式)
     *
     * @param longitude1 第一个点的经度
     * @param latitude1  第一个点的纬度
     * @param longitude2 第二个点的经度
     * @param latitude2  第二个点的纬度
     * @return 返回距离,单位m
     */
    public static double getDistance1(double longitude1, double latitude1, double longitude2, double latitude2) {
        // 纬度
        double lat1 = Math.toRadians(latitude1);
        double lat2 = Math.toRadians(latitude2);
        // 经度
        double lon1 = Math.toRadians(longitude1);
        double lon2 = Math.toRadians(longitude2);
        // 纬度之差
        double a = lat1 - lat2;
        // 经度之差
        double b = lon1 - lon2;
        // 计算两点距离的公式
        double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(lat1) * Math.cos(lat2) * Math.pow(Math.sin(b / 2), 2)));
        // 弧长乘赤道半径, 返回单位: 米
        s = s * EQUATOR_RADIUS;
        return s;
    }

}

2.方法二

package com.test.java.util;

/**
 * 坐标位置相关util
 */
public class PositionUtil {

    /**
     * 地球平均半径(单位:米)
     */
    private static final double EARTH_AVG_RADIUS = 6371000;
    
    /**
     * 方法二:(反余弦计算方式)
     *
     * @param longitude1 第一点的经度
     * @param latitude1  第一点的纬度
     * @param longitude2 第二点的经度
     * @param latitude2  第二点的纬度
     * @return 返回的距离,单位m
     */
    public static double getDistance3(double longitude1, double latitude1, double longitude2, double latitude2) {
        // 经纬度(角度)转弧度。弧度作为作参数,用以调用Math.cos和Math.sin
        // A经弧度
        double radiansAX = Math.toRadians(longitude1);
        // A纬弧度
        double radiansAY = Math.toRadians(latitude1);
        // B经弧度
        double radiansBX = Math.toRadians(longitude2);
        // B纬弧度
        double radiansBY = Math.toRadians(latitude2);

        // 公式中“cosβ1cosβ2cos(α1-α2)+sinβ1sinβ2”的部分,得到∠AOB的cos值
        double cos = Math.cos(radiansAY) * Math.cos(radiansBY) * Math.cos(radiansAX - radiansBX) + Math.sin(radiansAY) * Math.sin(radiansBY);
        // System.out.println("cos = " + cos); // 值域[-1,1]

        // 反余弦值
        double acos = Math.acos(cos);
        // System.out.println("acos = " + acos); // 值域[0,π]
        // System.out.println("∠AOB = " + Math.toDegrees(acos)); // 球心角 值域[0,180]

        // 最终结果
        return EARTH_AVG_RADIUS * acos;
    }

}

3.方法三

基于谷歌地图的计算公式计算距离

package com.test.java.util;

/**
 * 坐标位置相关util
 */
public class PositionUtil {

    /**
     * 地球平均半径(单位:米)
     */
    private static final double EARTH_AVG_RADIUS = 6371000;

    /**
     * 经纬度转化为弧度(rad)
     *
     * @param d 经度/纬度
     */
    private static double rad(double d) {
        return d * Math.PI / 180.0;
    }

    /**
     * 方法三:(基于googleMap中的算法得到两经纬度之间的距离,计算精度与谷歌地图的距离精度差不多。)
     *
     * @param longitude1 第一点的经度
     * @param latitude1  第一点的纬度
     * @param longitude2 第二点的经度
     * @param latitude2  第二点的纬度
     * @return 返回的距离,单位m
     */
    public static double getDistance2(double longitude1, double latitude1, double longitude2, double latitude2) {
        double radLat1 = rad(latitude1);
        double radLat2 = rad(latitude2);
        double a = radLat1 - radLat2;
        double b = rad(longitude1) - rad(longitude2);
        double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(radLat1) * Math.cos(radLat2) * Math.pow(Math.sin(b / 2), 2)));
        s = s * EARTH_AVG_RADIUS;
        s = Math.round(s * 10000d) / 10000d;
        return s;
    }

}

4.方法四

基于高德地图

package com.test.java.util;

/**
 * 计算距离
 */
public class PositionUtil {


    /**
     * 方法四:(高德地图计算方法)
     *
     * @param longitude1 第一点的经度
     * @param latitude1  第一点的纬度
     * @param longitude2 第二点的经度
     * @param latitude2  第二点的纬度
     * @return 返回的距离,单位m
     */
    public static Double getDistance4(double longitude1, double latitude1, double longitude2, double latitude2) {
        if (longitude1 == 0 || latitude1 == 0 || latitude2 == 0 || longitude2 == 0) {
            return -1.0;
        }
        longitude1 *= 0.01745329251994329;
        latitude1 *= 0.01745329251994329;
        longitude2 *= 0.01745329251994329;
        latitude2 *= 0.01745329251994329;
        double var1 = Math.sin(longitude1);
        double var2 = Math.sin(latitude1);
        double var3 = Math.cos(longitude1);
        double var4 = Math.cos(latitude1);
        double var5 = Math.sin(longitude2);
        double var6 = Math.sin(latitude2);
        double var7 = Math.cos(longitude2);
        double var8 = Math.cos(latitude2);
        double[] var10 = new double[3];
        double[] var20 = new double[3];
        var10[0] = var4 * var3;
        var10[1] = var4 * var1;
        var10[2] = var2;
        var20[0] = var8 * var7;
        var20[1] = var8 * var5;
        var20[2] = var6;

        return Math.asin(Math.sqrt((var10[0] - var20[0]) * (var10[0] - var20[0]) + (var10[1] - var20[1]) * (var10[1] - var20[1]) + (var10[2] - var20[2]) * (var10[2] - var20[2])) / 2.0) * 1.27420015798544E7;
        // 结果四舍五入 保留2位小数
        //return new BigDecimal(distance).setScale(2, RoundingMode.HALF_UP).doubleValue();
    }

}

5.方法五

该方法是利用第三方jar包计算

5.1 POM引入第三方依赖

    <!--用于计算两点之间的距离-->
    <dependency>
        <groupId>org.gavaghan</groupId>
        <artifactId>geodesy</artifactId>
        <version>1.1.3</version>
    </dependency>

5.2 代码

package com.test.java.util;

import org.gavaghan.geodesy.Ellipsoid;
import org.gavaghan.geodesy.GeodeticCalculator;
import org.gavaghan.geodesy.GeodeticCurve;
import org.gavaghan.geodesy.GlobalCoordinates;

/**
 * 坐标位置相关util
 */
public class PositionUtil {

    /**
     * 方法四:(利用第三方jar包计算)
     * 计算两个经纬度之间的距离
     *
     * @param longitude1 第一点的经度
     * @param latitude1  第一点的纬度
     * @param longitude2 第二点的经度
     * @param latitude2  第二点的纬度
     * @param ellipsoid  计算方式
     * @return 返回的距离,单位m
     */
    public static double getDistance4(double longitude1, double latitude1, double longitude2, double latitude2, Ellipsoid ellipsoid) {
        // 创建GeodeticCalculator,调用计算方法,传入坐标系、经纬度用于计算距离
        GlobalCoordinates firstPoint = new GlobalCoordinates(longitude1, latitude1);
        GlobalCoordinates secondPoint = new GlobalCoordinates(longitude2, latitude2);
        GeodeticCurve geoCurve = new GeodeticCalculator().calculateGeodeticCurve(ellipsoid, firstPoint, secondPoint);
        return geoCurve.getEllipsoidalDistance();
    }

}

6.测试结果对比

这里我直接一起调用者4种方法,这样看结果也更加直观些。

    public static void main(String[] args) {

        double longitude1 = 117.344733;
        double latitude1 = 31.912334;
        double longitude2 = 117.272186;
        double latitude2 = 31.79422;

        double distance1 = PositionUtil.getDistance1(longitude1, latitude1, longitude2, latitude2);
        double distance2 = PositionUtil.getDistance2(longitude1, latitude1, longitude2, latitude2);
        double distance3 = PositionUtil.getDistance3(longitude1, latitude1, longitude2, latitude2);
        double distance4 = PositionUtil.getDistance4(longitude1, latitude1, longitude2, latitude2);
        double distance5 = PositionUtil.getDistance4(longitude1, latitude1, longitude2, latitude2, Ellipsoid.Sphere);
        double distance6 = PositionUtil.getDistance4(longitude1, latitude1, longitude2, latitude2, Ellipsoid.WGS84);


        System.out.println("方法1算出的距离:" + distance1);
        System.out.println("方法2算出的距离:" + distance2);
        System.out.println("方法3算出的距离:" + distance3);
        System.out.println("方法4算出的距离:" + distance4);
        System.out.println("方法4-Sphere算出的距离:" + distance5);
        System.out.println("方法4-WGS84算出的距离:" + distance6);
    }

可以看出,前四个方法算出的距离相对较小。而且main方法中提供的测试数据也是我自身的真实数据,结合百度地图的测距工具,我个人推荐前四个方法,与实际的误差相对较小。

二、校验经纬度是否在制定区域内

怎么样判断一个坐标点在指定的区域内?其中区域又会分为:圆,多边形和不规则的多边形。

1.判断一个坐标是否在圆形区域内

计算这个坐标点和圆心之间的距离,然后跟圆的半径进行比较,如果比半径大,就不在圆形区域内,如果小于等于圆的半径,则该坐标点在圆形区域内。

package com.test.java.util;

import org.apache.commons.lang3.StringUtils;

/**
 * 计算距离
 */
public class PositionUtil {

    /**
     * 赤道半径(单位:米)
     */
    private static final double EQUATOR_RADIUS = 6378137;

    /**
     * 方法一:(反余弦计算方式)
     *
     * @param longitude1 第一个点的经度
     * @param latitude1  第一个点的纬度
     * @param longitude2 第二个点的经度
     * @param latitude2  第二个点的纬度
     * @return 返回距离,单位m
     */
    public static double getDistance1(double longitude1, double latitude1, double longitude2, double latitude2) {
        // 纬度
        double lat1 = Math.toRadians(latitude1);
        double lat2 = Math.toRadians(latitude2);
        // 经度
        double lon1 = Math.toRadians(longitude1);
        double lon2 = Math.toRadians(longitude2);
        // 纬度之差
        double a = lat1 - lat2;
        // 经度之差
        double b = lon1 - lon2;
        // 计算两点距离的公式
        double s = 2 * Math.asin(Math.sqrt(Math.pow(Math.sin(a / 2), 2) + Math.cos(lat1) * Math.cos(lat2) * Math.pow(Math.sin(b / 2), 2)));
        // 弧长乘赤道半径, 返回单位: 米
        s = s * EQUATOR_RADIUS;
        return s;
    }

    /**
     * 判断坐标点是否在圆形区域内
     * 计算这个坐标点和圆心点之间的距离,然后跟圆的半径进行比较,如果比半径大,就不在圆形区域内,如果小于等于圆的半径,则该坐标点在圆形区域内
     *
     * @param longitude1 第一点的经度
     * @param latitude1  第一点的纬度
     * @param longitude2 第二点的经度
     * @param latitude2  第二点的纬度
     * @param radius     圆形范围半径(单位:米)
     * @return true:不在区域内; false:在区域内
     */
    public static boolean isInCircle(double longitude1, double latitude1, double longitude2, double latitude2, String radius) {
        if (StringUtils.isBlank(radius)) {
            throw new RuntimeException("请输入范围半径");
        }
        return getDistance1(longitude1, latitude1, longitude2, latitude2) > Double.parseDouble(radius);
    }

}

2.判断一个坐标是否在一个多边形区域内

这里用到JAVA的一个类GeneralPath(由直线和二次和三次(B?zier)曲线构成的几何路径。 它可以包含多个子路径)使用这个类,结合传入的各顶点参数,画一个几何图形,并通过它自身的contains方法,判断该点是否在这个几何图形内。

package com.test.java.util;

import org.apache.commons.lang3.StringUtils;

import java.awt.geom.GeneralPath;
import java.awt.geom.Point2D;
import java.util.ArrayList;
import java.util.List;

/**
 * 计算距离
 */
public class PositionUtil {

    /**
     * 判断坐标点是否在多边形区域内
     *
     * @param pointLon 要判断的点的经度
     * @param pointLat 要判断的点的纬度
     * @param lon      区域各顶点的经度数组
     * @param lat      区域各顶点的纬度数组
     * @return true:范围内; false:范围外
     */
    public static boolean isInPolygon(double pointLon, double pointLat, double[] lon, double[] lat) {
        // 将要判断的横纵坐标组成一个点
        Point2D.Double point = new Point2D.Double(pointLon, pointLat);
        // 将区域各顶点的横纵坐标放到一个点集合里面
        List<Point2D.Double> pointList = new ArrayList<>();
        double polygonPointToX;
        double polygonPointToY;
        for (int i = 0; i < lon.length; i++) {
            polygonPointToX = lon[i];
            polygonPointToY = lat[i];
            Point2D.Double polygonPoint = new Point2D.Double(polygonPointToX, polygonPointToY);
            pointList.add(polygonPoint);
        }
        return check(point, pointList);
    }

    /**
     * 坐标点是否在多边形内
     *
     * @param point   要判断的点的横纵坐标
     * @param polygon 组成的顶点坐标集合
     */
    private static boolean check(Point2D.Double point, List<Point2D.Double> polygon) {
        GeneralPath generalPath = new GeneralPath();

        Point2D.Double first = polygon.get(0);
        // 通过移动到指定坐标(以双精度指定),将一个点添加到路径中
        generalPath.moveTo(first.x, first.y);
        polygon.remove(0);
        for (Point2D.Double d : polygon) {
            // 通过绘制一条从当前坐标到新指定坐标(以双精度指定)的直线,将一个点添加到路径中。
            generalPath.lineTo(d.x, d.y);
        }
        // 将几何多边形封闭
        generalPath.lineTo(first.x, first.y);
        generalPath.closePath();
        // 测试指定的 Point2D 是否在 Shape 的边界内。
        return generalPath.contains(point);
    }

}

3.结果

    public static void main(String[] args) {

        double distance1 = PositionUtil.getDistance1(longitude1, latitude1, longitude2, latitude2);
        System.out.println("坐标与圆心的距离:" + distance1);

        String radius1 = "10000";
        boolean inCircle1 = PositionUtil.isInCircle(longitude1, latitude1, longitude2, latitude2, radius1);
        System.out.println("校验坐标是否在圆形范围内:" + inCircle1);

        String radius = "15000";
        boolean inCircle2 = PositionUtil.isInCircle(longitude1, latitude1, longitude2, latitude2, radius);
        System.out.println("校验坐标是否在圆形范围内:" + inCircle2);

        double pointLon = 117.274984;
        double pointLat = 31.790718;

        // 坐标在多边形范围内的参数:
        double[] lon = {117.272559, 117.276224, 117.278649, 117.273924};
        double[] lat = {31.791247, 31.792812, 31.78982, 31.788539};

        // 坐标在多边形范围外的参数:
        double[] lon1 = {117.291001, 117.299705, 117.298035, 117.291216};
        double[] lat1 = {31.806576, 31.806814, 31.802319, 31.802196};

        boolean a = PositionUtil.isInPolygon(pointLon, pointLat, lon, lat);
        boolean b = PositionUtil.isInPolygon(pointLon, pointLat, lon1, lat1);
        System.out.println("校验坐标是否在多边形范围内:" + a);
        System.out.println("校验坐标是否在多边形范围内:" + b);
    }

 

 


总结

        这样的计算方式得到的距离并非是真实的距离,可以说是逻辑距离(直线距离),但其距离也已经很准确。不过毕竟是通过逻辑计算得到的距离,若要求高准确性的距离信息的话,还是借助第三方的地图api接口获取比较合适。

如果这篇文章对您有所帮助,或者有所启发的话,求一键三连:点赞、评论、收藏➕关注,您的支持是我坚持写作最大的动力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/62398.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测

回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测 目录 回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测预测效果基本介绍研究内容程序设计参考资料…

C语言代码的x86-64汇编指令分析过程记录

先通过Xcode创建一个terminal APP&#xff0c;语言选择C。代码如下&#xff1a; #include <stdio.h>int main(int argc, const char * argv[]) {int a[7]{1,2,3,4,5,6,7};int *ptr (int*)(&a1);printf("%d\n",*(ptr));return 0; } 在return 0处打上断点&…

数据库设计范式

数据库的设计范式都包括哪些 我们在设计关系型数据库模型的时候&#xff0c;需要对关系内部各个属性之间联系的合理化程度进行定义&#xff0c;这就有了不同等级的规范要求&#xff0c;这些规范要求被称为范式&#xff08;NF&#xff09;。你可以把范式理解为&#xff0c;一张数…

【【萌新的STM32 学习-6】】

萌新的STM32 学习-6 BSP 文件夹&#xff0c;用于存放正点原子提供的板级支持包驱动代码&#xff0c;如&#xff1a;LED、蜂鸣器、按键等。 本章我们暂时用不到该文件夹&#xff0c;不过可以先建好备用。 CMSIS 文件夹&#xff0c;用于存放 CMSIS 底层代码&#xff08;ARM 和 ST…

ESP32(MicroPython)四轮差速底盘遥控

本项目主控改为ESP32-C3&#xff0c;沿用之前的L298N电机驱动、12.6v 18650电池组、LM7805降压模块的方案。电机改用1&#xff1a;19减速比的&#xff0c;使用130mm车轮&#xff0c;主要考虑越野用途。 遥控方面&#xff0c;本项目使用HC-14模块&#xff0c;实测连接到电脑可以…

Java课题笔记~ 关联映射

一、MyBatis关联查询 在关系型数据库中&#xff0c;表与表之间存在着3种关联映射关系&#xff0c;分别为一对一、一对多、多对多。 一对一&#xff1a;一个数据表中的一条记录最多可以与另一个数据表中的一条记录相关。列如学生与学号就属于一对一关系。 一对多&#xff1a;主…

Stable Diffusion 硬核生存指南:WebUI 中的 GFPGAN

本篇文章聊聊 Stable Diffusion WebUI 中的核心组件&#xff0c;强壮的人脸图像面部画面修复模型 GFPGAN 相关的事情。 写在前面 本篇文章的主角是开源项目 TencentARC/GFPGAN&#xff0c;和上一篇文章《Stable Diffusion 硬核生存指南&#xff1a;WebUI 中的 CodeFormer》提…

流程图如何制作?5步快速画出好看的流程图!

流程图是一种图形化工具&#xff0c;描述某个过程或者操作的步骤&#xff0c;以及某种业务系统的具体流程。流程图通常由各种图形符号、形状、箭头组成&#xff0c;可以清晰的表示出流程或系统中各种步骤、每个环节之间的关系、条件判断、数据的流动和处理过程等。 在线流程图软…

C语言强制类型转换

无符号与有符号数&#xff1a;不改变数据内容&#xff0c;改变解释方式 长整数变为短整数&#xff1a;高位阶段&#xff0c;保留低位 短整数变长整数&#xff1a;符号扩展

SAS-数据集SQL垂直(纵向)合并

一、SQL垂直合并的基本语法 一个selectt对应一个表&#xff0c;select之间用set-operator连接&#xff0c;set-operator包括&#xff1a;except&#xff08;期望&#xff09;、intersect&#xff08;相交&#xff09;、union&#xff08;合并&#xff09;&#xff0c;outer un…

[K8S:命令执行:权限异常:解决篇]:通过更新kubeconfig配置相关信息

文章目录 一&#xff1a;场景复现&#xff1a;1.1&#xff1a;关键信息&#xff1a;1.2&#xff1a;全异常日志输出&#xff1a; 二&#xff1a;解决流程&#xff1a;2.1&#xff1a;更新 kubeconfig&#xff1a;2.1.1&#xff1a;执行命令&#xff1a; 2.2&#xff1a;再次执行…

【react】react中BrowserRouter和HashRouter的区别:

文章目录 1.底层原理不一样:2.path衣现形式不一样3.刷新后对路山state参数的影响4.备注: HashRouter可以用于解决一些路径错误相关的问题 1.底层原理不一样: BrowserRouter使用的是H5的history API&#xff0c;不兼容IE9及以下版不。 HashRouter使用的是URL的哈希值。 2.path衣…

DHCP协议及其实验(eNSP)

目录 一&#xff0c;DHCP 1.1&#xff0c;DHCP作用 1.2&#xff0c;DHCP地址池 1.3&#xff0c;DHCP报文类型 1.4&#xff0c;DHCP工作原理 对DHCP工作原理的思考&#xff1a; 1.5&#xff0c;DHCP租期更新 1.6&#xff0c;DHCP重绑定 1.7&#xff0c;IP地址释放 二&am…

笔记本WIFI连接无网络【实测有效解决方案,不用重启电脑】

笔记本Wifi连接无网络实测有效解决方案 问题描述&#xff1a; 笔记本买来一段时间后&#xff0c;WIFI网络连接开机一段时间还正常连接&#xff0c;但是过一段时间显示网络连接不上解决方案&#xff1a; 1.编写网络重启bat脚本&#xff0c;将以下内容写到文本文件&#xff0c;把…

华夏ERP信息泄露

声明 本文仅用于技术交流&#xff0c;请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任。 文章作者拥有对此文章的修改和解释权。如欲转载或传播此文章&#xff0c…

用 Gaussian Process 建模 state-action 空间相关性,加速 Multi-Fidelity RL

1 intro 利用相邻 state-action 的空间相关性来加速学习&#xff1a;通过 Gaussian Process&#xff08;GP&#xff09;作为函数逼近器。主要贡献&#xff1a;两个算法。 model-based MFRL 算法 GP-VI-MFRL&#xff0c;估计转换函数&#xff0c;然后使用 value iteration 计算…

EVE-NG MPLS L2VPN LDP lsp

目录 1 拓扑 2 配置步骤 2.1 配置接口IP 和路由协议 2.2 配置MPLS LDP 2.3 配置L2VPN PW(LDP) 2.4 验证L2VPN 1 拓扑 2 配置步骤 2.1 配置接口IP 和路由协议 PE1 interface LoopBack 0ip address 1.1.1.9 32 quitinterface GigabitEthernet1/0ip address 10.1.1.1 25…

【ONE·Linux || 基础IO(二)】

总言 文件系统与动静态库相关介绍。 文章目录 总言2、文件系统2.1、背景知识2.2、磁盘管理2.2.1、磁盘文件系统图2.2.2、inode与文件名 2.3、软硬链接 3、动静态库3.1、站在编写库的人的角度&#xff1a;如何写一个库&#xff1f;3.1.1、静态库制作3.1.3、动态库制作 3.2、站在…

机器学习深度学习——序列模型(NLP启动!)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——卷积神经网络&#xff08;LeNet&#xff09; &#x1f4da;订阅专栏&#xff1a;机器学习&&深度…

VS2022程序集说明汉化

下载本地化的 .NET IntelliSense 文件 https://dotnet.microsoft.com/zh-cn/download/intellisense 目前本地化的 IntelliSense 文件不再可用。 可用的最新版本是 .NET 5。 建议使用英语 IntelliSense 文件。 .NET6的汉化需要自己动手&#xff1a; 教程可以参照下方&#xff1a…