61、内蒙古工业大学、内蒙科学技术研究院:CBAM-CNN用于SSVEP - BCI的分类方法[脑机二区还是好发的]

前言:

之前写过一篇对CBAM模型改进的博客,在CBAM中引入了ECANet结构,对CBAM中的CAM、SAM模块逐一改进,并提出ECA-CBAM单链双链结构,我的这个小的想法已经被一些同学实现了,并进行了有效的验证,写了毕业论文,我既然把这个idea写成博文,那对于这些行为我也不追究了(其实应该加我名字)。还是关注CBAM这块,注意力这块它还是热点,也好发论文,今天我们看一下一篇2区的文章。

本文由内蒙古工业大学电力学院,内蒙古自治区高校智能能源技术与装备工程研究中心,大型储能技术教育部工程研究中心,内蒙古科学技术研究院2024年发表于Scientific ReportsIF:4.6/JCR:Q2

Abstract:

对于基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统,传统方法对短时窗SSVEP信号难以获得满意的分类效果。本文提出了一种基于卷积神经网络(cam - cnn)的融合多子频段和卷积块注意模块(CBAM)分类方法,用于识别SSVEP-BCI任务。该方法提取多个子频段的SSVEP信号作为网络模型的初始输入,然后对所有特征输入进行特征融合。此外,CBAM嵌入到初始输入和特征融合的两个部分,用于自适应特征细化。为了验证所提方法的有效性,本研究使用内蒙古工业大学(IMUT)和清华大学(THU)的数据集来评估所提方法的性能。实验结果表明,CBAM-CNN的最高准确率达到0.9813个百分点(pp)。在0.1 ~ 2 s时间窗内,CBAMCNN的准确率比CNN、CCA- cwt - svm、CCA- svm、CCA- gnb、FBCCA和CCA的准确率高0.0201 ~ 0.5388 (pp)。特别是在0.1-1 s的短时窗范围内,CBAM-CNN的性能优势更为显著。CBAM-CNN的最大信息传输速率(ITR)为503.87 bit/min,比上述六种脑电图解码方法高227.53 bit/min-503.41 bit/min。研究结果进一步表明,CBAM-CNN在SSVEP解码中具有潜在的应用价值。

Introduction:

脑机接口(BCI)是一种将人脑与外部设备连接起来的新型人机交互形式1,2。脑机接口技术已广泛应用于康复工程、疲劳检测和智能家居等领域。随着脑机接口技术的发展,出现了稳态视觉诱发电位(SSVEP)6、P3007和运动意象(MI)8等典型的脑机接口模式。当受试者受到特定频率的视觉刺激时,大脑的视觉皮层会产生与刺激频率相关的连续电反应信号,该信号被称为SSVEP9。在SSVEP- bci系统中,每个特定的刺激频率都可以映射到指定的控制指令,并通过设计的方法对SSVEP信号进行反向解码,从而获得控制命令的分类结果10。SSVEP因其具有高信息传输速率(ITR)、高信噪比(SNR)、训练要求低等优点而受到众多学者的关注并得到广泛应用11 - 15。

传统的SSVEP范式目标识别方法包括连续小波变换(CWT)和典型相关分析(CCA)。CWT方法同时提取SSVEP信号的时域和频域特征。此外,该方法依靠先验知识提取若干感兴趣的频带,然后使用小波系数作为特征进行分类。CWT的核心是选择合适的母小波,不同的母小波通常会产生不同的分类结果。CCA以其计算速度快、鲁棒性好等优点被广泛应用于SSVEP-BCI系统中。

CCA的基本思想是定量计算由正弦和余弦构造的参考信号与待检测的脑电信号之间的相关性,进而识别刺激目标的频率使用最大相关系数。尽管CCA和CWT目标识别方法具有不同的特点,都能达到一定的效果,但两种方法的准确率仍然处于较低的水平。为了提高SSVEP任务分类的准确率,研究者们提出了许多改进的CCA方法。例如,提出了一种将多元变分模态分解(MVMD)与CCA相结合的方法来提高SSVEP信号的检测和分类能力。2017年,Nakanishi等人18提出了任务相关成分分析(task-related component analysis, TRCA),该方法可以最大限度地提高SSVEP信号在多个试验之间的再现性,提高其信噪比。因此,该方法特别适用于SSVEP等锁时信号的分类任务。Chen等人提出了一种滤波器组典型相关分析(filter bank canonical correlation analysis, FBCCA)方法,该方法结合基频和谐波频率分量,将CCA应用于脑电信号的多子频段滤波。FBCCA方法可以提高SSVEP-BCI的ITR和准确度。随着机器学习理论的发展,越来越多的机器学习模型被应用于SSVEP-BCI的目标分类任务,包括线性判别分析(LDA)19、高斯朴素贝叶斯(GNB)20、递归贝叶斯(RB)21和支持向量机(SVM)22。上述传统方法在解决不同的具体分类问题时具有显著的优势。但上述方法提取和处理的特征比较单一,对高级特征的编码能力不足。特别是在处理复杂脑电信号的分类时,需要提高分类的准确率和ITR。

近十年来,深度学习方法在图像处理、语音识别和自然语言处理方面表现出了巨大的能力23 - 25。由于深度学习在处理非线性、非平稳和随机信号建模方面的独特能力,卷积神经网络(CNN)等深度学习网络已逐渐应用于脑电图建模和分类领域,并取得了显著的效果26,27。CNN方法用自己的模型结构学习特征,不需要人工设计特征。此外,CNN在处理脑电信号时具有更好的自适应和自学习能力,并且具有比传统方法更好的泛化能力。2017年,Kwak等28提出了一种基于cnn的动态环境下的SSVEP分类器,SSVEP信号分类准确率达到94.03%。

与传统机器学习方法相比,CNN方法在信号特征表征和学习方面可以取得更好的性能。但是,CNN在关键特征表征和增强方面的作用仍有提高的空间,需要进一步加强。在深度学习网络中,注意机制的引入可以根据网络中不同特征的重要性匹配相应的权值。注意机制可以增强一些重要关键特征的贡献,同时削弱次要特征的贡献。因此,该机制可以进一步提取特征并提高模型的性能29,30。目前,人们提出了多种类型的注意机制模型。例如,挤压激励网络(SENet)通过特征再校准方法自适应地调整通道之间的影响,从而更有效地利用特征31。高效通道注意网络(ECANet)通过一维卷积跨通道交互来避免SENet降维的影响32。空间变压器网络(STN)通过训练与特定输入相对应的空间变换获得更好的鲁棒性33。以上注意模型仅从空间或渠道方面片面强化特征,所代表的特征是局部的。卷积块注意模块(convolutional block attention module, CBAM)同时考虑了空间和通道的特征,通过通道和空间两个独立的维度依次推断出注意图。然后将注意图与输入特征图相乘进行进一步的自适应特征优化,可以有效地提高深度学习模型的性能。

本文提出了一种基于CNN的融合多子频段和CBAM分类方法(CBAMCNN)。多子频段可以更全面地提取SSVEP信号的特征信息。此外,嵌入式CBAM同时使用空间和通道注意来提高深度学习网络的特征表示能力34。与其他经典方法相比,本文提出的CBAM-CNN模型结构在短时窗下具有更高的SSVEP信号精度和ITR。特别是,CBAM-CNN模型结构具有较好的自适应能力。

Proposed CBAM‑CNN method:

出的CBAM-CNN模型为识别SSVEP-BCI任务提供了一种新的方法。该模型融合了更丰富的SSVEP信号特征信息。同时,嵌入式CBAM利用空间和通道关注进一步提高了深度学习网络的特征表示能力。如图1所示,CBAM- cnn结构由下采样层、输入层、卷积层、特征融合层、CBAM层、平坦层、全连接层和输出层组成。原始数据为7 × 3000 × 40 × 4,其中7为引线数,3000为每个刺激频率一次实验的采样点数,40为每个刺激频率的实验数。4为刺激频率的个数。CBAM-CNN网络在进入层前需要以7 × 24000的形式对数据进行处理。

CBAM-CNN网络结构的第一层是降低原始脑电图数据的采样频率。下采样用于将原始数据的采样频率从1000 Hz调整到500hz。输入层通过巴特沃斯滤波器获取多亚频带信号。子频段信号的低信噪比导致信号分析和特征提取的有效性降低。50 Hz以上频段的SSVEP信号信噪比较低。因此,CBAM-CNN方法不使用50 Hz以上的多子频段信息。多子频段的频率范围分别为7 ~ 16hz、15 ~ 31hz、23 ~ 46hz和7 ~ 50hz。其中,根据刺激频率的一次谐波、二次谐波和三次谐波选择7-16 Hz、15-31 Hz和23-46 Hz的子频段。每个谐波都有一个完整的特征信息。7 ~ 50hz的子频段表示可用波段的综合特征信息。为了更充分地提取SSVEP信号的时间信息和空间信息特征,建立了多子频段信号。采用四个子频段的多子频段信号作为卷积层的初始输入。然后通过Conv1、Conv2、Conv3和CBAM的顺序层将信号转换为四个精细特征。之后,特征融合层将其上层的四个精炼特征融合在一起。此外,CBAM- cnn方法在特征融合层和Conv4之间嵌入第二个CBAM模块,增强对空间和通道维度上重点特征的关注。

Conv1、Conv2、Conv3和Conv4是CBAM-CNN网络的四个卷积层。Conv1的卷积核为NL × 1。NL表示引线的数量。Conv1输出SSVEP信号的时间信息。第二次卷积的卷积核为1 × TW,其中TW为下采样后的采样周期。Conv2输出SSVEP信号的空间信息。每个卷积层后面都有一个批归一化(BN)层,用于对SSVEP数据进行归一化。BN层可以将当前输入数据转换为均值为0,方差为1的标准正态分布,从而加快模型收敛速度,控制梯度爆炸,防止梯度消失和过拟合。CBAM-CNN的激活函数是ELU函数,即一种非饱和激活函数,ELU激活函数的强度在于其缓解梯度消失的能力和对噪声的鲁棒性。特征融合层对四个频带信号进行融合,然后依次通过第二个CBAM和Conv4提取重要特征。显然,Conv4层的输出是高维的,不能传输到最终的全连接层。因此,通过flatten层将高维数据转换为一维数据,作为全连接层的输入。

总结:

1、原始SSVEP信号4维作为输入

2、EEG信号滤波成4个子频带

3、添加2块CBAM

4、第二块添加在特征融合层,提取特征的特征

5、没了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/622862.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

算法-卡尔曼滤波之为什么要使用卡尔曼滤波器

假设使用雷达来预测飞行器的位置; 预先的假设条件条件: 1.激光雷达的激光束每5s发射一次; 2.通过接受的激光束,雷达估计目标当前时刻的位置和速度; 3.同时雷达要预测下一时刻的位置和速度 根据速度,加速度和位移的…

ROS2 - 创建项目 (Ubuntu22.04)

本文简述:在 Ubuntu22.04 系统中使用 VS CODE 来搭建一个ROS2开发项目。 1. 创建工作空间 本文使用 Ubuntu 22.04, 已安装配置完成 VS Code,C 环境(g/gdb) 1.1 创建目录 选择文件夹作为工作空间,并在这…

Django开发实战之定制管理后台界面及知识梳理(下)

接上一篇:Django开发实战之定制管理后台界面及知识梳理(中) 1、前台设置 1、隐藏路由 当你输入一个错误地址时,可以看到这样的报错: 从这样的报错中,我们可以看到,这个报错页面暴漏了路由&a…

数据结构-题目

1.已知一颗完全二叉树的第6曾(设根为第1层),有8个结点,则完全二叉树的结点个数,最少和最多分别是多少? 因此最少为39,最多为111 2.假设一棵三叉树的结点数为50,则它的最小高度为&…

【数据结构与算法 刷题系列】合并两个有序链表

💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:数据结构与算法刷题系列(C语言) 目录 一、问题描述 二、解题思路详解 合并两个有序链表的思路 解题的步…

[PythonWeb:Django框架]:前后端请求调用;

文章目录 接着上篇项目app包下面创建static包,引入jquery,bootstrap 相关js文件views.py编写apicompute文件夹下面的urls.py路由模块引入views.py刚刚定义的函数html发送ajax请求 接着上篇 https://blog.csdn.net/Abraxs/article/details/138739727?sp…

【pouchdb-可视化工具 】

最近使用pouchdb,想找个其对应的可视化工具,可以对数据库进行操作。 找了好久才找到,网上有说先同步到couchdb,再用couchdb的可视化工具查看,其实没有那么麻烦,pouchdb的可视化工具其实藏在另外的pouchdb-…

让创意在幻觉中肆虐: 认识Illusion Diffusion AI

人工智能新境界 在不断发展的人工智能领域,一款非凡的新工具应运而生,它能将普通照片转化为绚丽的艺术品。敬请关注Illusion Diffusion,这是一个将现实与想象力完美融合的AI驱动平台,可创造出迷人的视错觉和超现实意境。 AI算法的魔力所在 Illusion Diffusion 的核心是借助先进…

react Effect副作用 - 避免滥用Effect

react Effect副作用 - 避免滥用Effect react Effect副作用基础概率什么是纯函数? 什么是副作用函数?纯函数副作用函数 什么时候使用Effect如何使用Effect 避免滥用Effect根据 props 或 state 来更新 state当 props 变化时重置所有 state将数据传递给父组件获取异步数据 react…

持续集成-Git

重要步骤命令 git init (初始化一个仓库) git add [文件名] (添加新的文件) git commit -m [关于本次提交的相关说明] (提交) git status (查看文件状态) git diff (如果文件改变,比较两个文件内容) git add[文件名] || git commit -a -m [关于本次提交的相关说…

RiProV2主题美化【支付页弹窗增加价格提示语】Ritheme主题美化RiProV2-网站WordPress美化二开

背景: 楼主的网站是用WordPress搭建的,并使用了正版主题RiProV2,但RiProV2在支付弹窗页没有价格,只在文章详情页会展示价格。本文就是美化这个支付弹窗,在支付弹窗页把价格字段加上,如下图所示: 美化前: 美化后 美化步骤: (1)定位到文件:/www/wwwroot/www.uu2i…

免费思维13招之九:时间型思维

免费思维13招之九:时间型思维 免费思维的另一大战略思维——时间型思维。 什么是时间型思维呢?就是在某一个规定的时间内对消费者进行免费,比如一个月中的某一天,或一周中的某一天或一天中的某一个时间段对消费者进行免费。 就在去年,有一个电影院老板弟子,他的电影院营…

增强型植被指数EVI、ndvi数据、NPP数据、GPP数据、土地利用数据、植被类型数据、降雨量数据

引言 多种卫星遥感数据反演增强型植被指数(EVI)产品是地理遥感生态网推出的生态环境类数据产品之一,产品包括1986-2021年度月度数据,数据类型tif栅格数据。该产品经过专家组验证,质量良好。 正文 栅格数据源 数据名…

【JavaEE】Web服务器与请求响应流程:深入了解如何处理Web请求

目录 Web服务器请求响应流程分析小结 Web服务器 浏览器和服务器两端进⾏数据交互, 使⽤的就是HTTP协议 前⾯我们已经学习了 HTTP 协议, 知道了 HTTP 协议就是 HTTP 客⼾端和 HTTP 服务器之间的交互数据的格式. Web 服务器就是对HTTP协议进⾏封装, 程序员不需要直接对协议进⾏…

开关电源功率测试方法:输入、输出功率测试步骤

在现代电子设备中,开关电源扮演着至关重要的角色,其效率和稳定性直接影响到整个系统的性能。因此,对开关电源进行功率测试成为了电源管理的重要环节。本文将详细介绍如何使用DC-DC电源模块测试系统对开关电源的输入输出功率进行准确测量&…

快速对比 找出2个名单不同之处

import pandas as pd# 读取两个Excel文件 df1 pd.read_excel(1.xlsx) df2 pd.read_excel(2.xlsx)# 检查两个DataFrame的列是否相同 if list(df1.columns) ! list(df2.columns):print("两个Excel文件的列不一致。")print("文件1的列:", df1.co…

【C++】可变参数模板简单介绍

前言 可变参数模板是C11中的新特性,它能够让我们创建可以接收可变参数的函数模板和类模板,相比C98/03,类模版和函数模版中只能含固定数量的模版参数,可变模版参数是一个巨大的改进,通过系统系统推演数据的类型&#xf…

OpenCL

一、OpenCL host开发流程 建立Platform环境(Platform、Device、contest) 平台:一台服务器可以有GPU和FPGA多个平台 cl_platform_id XfindPlatform("Intel(R) FPGA");或clGetPlatformIDs(1, &myp, NULL); 设备:通过…

SpringBoot集成Seata分布式事务OpenFeign远程调用

Docker Desktop 安装Seata Server seata 本质上是一个服务,用docker安装更方便,配置默认:file docker run -d --name seata-server -p 8091:8091 -p 7091:7091 seataio/seata-server:2.0.0与SpringBoot集成 表结构 项目目录 dynamic和dyna…

【MQTT】paho.mqtt.c 库的“介绍、下载、交叉编译” 详解,以及编写MQTT客户端例子源码

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 ⏰发布时间⏰:2024-05-13 1…