Hive表数据优化

Hive表数据优化

1.文件格式

为Hive表中的数据选择一个合适的文件格式,对提高查询性能的提高是十分有益的。

在这里插入图片描述
在这里插入图片描述

(1)Text File

文本文件是Hive默认使用的文件格式,文本文件中的一行内容,就对应Hive表中的一行记录。
在这里插入图片描述

可通过以下建表语句指定文件格式为文本文件:

create table textfile_table
(column_specs)
stored as textfile;

(2)ORC

ORC(Optimized Row Columnar)file format是Hive 0.11版里引入的一种列式存储的文件格式。ORC文件能够提高Hive读写数据和处理数据的性能。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  • 行存储的特点
    查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。
  • 列存储的特点
    因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。
    text file和sequence file都是基于行存储的,orc和parquet是基于列式存储的。

(3)Parquet

Parquet文件是Hadoop生态中的一个通用的文件格式,它也是一个列式存储的文件格式。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.数据压缩

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
压缩算法	原始文件大小	压缩文件大小	压缩速度	解压速度
gzip	8.3GB	1.8GB	17.5MB/s	58MB/s
bzip2	8.3GB	1.1GB	2.4MB/s	9.5MB/s
LZO	8.3GB	2.9GB	49.3MB/s	74.6MB/s

在这里插入图片描述

(1)Hive表数据进行压缩

在Hive中,不同文件类型的表,声明数据压缩的方式是不同的。

  • TextFile

若一张表的文件类型为TextFile,若需要对该表中的数据进行压缩,多数情况下,无需在建表语句做出声明。直接将压缩后的文件导入到该表即可,Hive在查询表中数据时,可自动识别其压缩格式,进行解压。

需要注意的是,在执行往表中导入数据的SQL语句时,用户需设置以下参数,来保证写入表中的数据是被压缩的。

--SQL语句的最终输出结果是否压缩
set hive.exec.compress.output=true;
--输出结果的压缩格式(以下示例为snappy)
set mapreduce.output.fileoutputformat.compress.codec =org.apache.hadoop.io.compress.SnappyCodec;
  • ORC

若一张表的文件类型为ORC,若需要对该表数据进行压缩,需在建表语句中声明压缩格式如下:

create table orc_table
(column_specs)
stored as orc
tblproperties ("orc.compress"="snappy");
  • Parquet

若一张表的文件类型为Parquet,若需要对该表数据进行压缩,需在建表语句中声明压缩格式如下:

create table orc_table
(column_specs)
stored as parquet
tblproperties ("parquet.compression"="snappy");

(2)计算过程中使用压缩

  • 单个MR的中间结果进行压缩

单个MR的中间结果是指Mapper输出的数据,对其进行压缩可降低shuffle阶段的网络IO,可通过以下参数进行配置:

--开启MapReduce中间数据压缩功能
set mapreduce.map.output.compress=true;
--设置MapReduce中间数据数据的压缩方式(以下示例为snappy)
set mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.SnappyCodec;
  • 单条SQL语句的中间结果进行压缩

单条SQL语句的中间结果是指,**两个MR(一条SQL语句可能需要通过MR进行计算)之间的临时数据,**可通过以下参数进行配置:

--是否对两个MR之间的临时数据进行压缩
set hive.exec.compress.intermediate=true;
--压缩格式(以下示例为snappy)
set hive.intermediate.compression.codec= org.apache.hadoop.io.compress.SnappyCodec;

3.存储优化

(1)避免小文件生成

在这里插入图片描述
在这里插入图片描述

(2)合并小文件

在这里插入图片描述

(3)ORC文件索引

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

(4)ORC矢量化查询

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/622691.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++之Eigen库基本使用(下)

1、常见变换 Eigen::Matrix3d //旋转矩阵(3*3) Eigen::AngleAxisd //旋转向量(3*1) Eigen::Vector3d //欧拉角(3*1) Eigen::Quaterniond //四元数(4*1) Eigen::Isom…

K8s:二进制安装k8s(单台master)

目录 一、安装k8s 1、拓扑图 2、系统初始化配置 2.1关闭防火墙selinx以及swap 2.2设置主机名 2.3在每台主机中添加hosts,做映射 2.4调整内核参数,将桥接的ipv4流量传递到iptables,关闭ipv6 2.4时间同步 3、部署docker引擎&#xff0…

【Kali Linux工具篇】wpscan的基本介绍与使用

介绍 WPScan是Kali Linux默认自带的一款漏洞扫描工具,它采用Ruby编写,能够扫描WordPress网站中的多种安全漏洞,其中包括主题漏洞、插件漏洞和WordPress本身的漏洞。最新版本WPScan的数据库中包含超过18000种插件漏洞和2600种主题漏洞&#x…

力扣【旋转函数】python

如果直接用暴力的话,只能过4个样例好像,超时 因此得用递推公式 F1F0前n-1个数-(n-1)*第n个数 F0sum(nums)-n*第n个数 nlen(nums) ans[]#定义一个存最大值值的列表 ss sum(nums) dm 0 for j in range(n):dm j * nums[j] ans.append(dm) print(dm) n…

MinIO学习笔记

MINIO干什么用的: AI数据基础设施的对象存储 为人工智能系统提供数据支持,数据存储;对象存储(Object Storage)是一种数据存储架构,它以对象为单位来处理、存储和检索数据,每个对象都包含了数据本…

GitHub和huggingface镜像网站

GitHub镜像网站 gitclone 如果网络原因打不开GitHub的话,可以用这个网站进行克隆项目,将克隆代码修改一下 git clone https://github.com/comfyanonymous/ComfyUI.git 修改 git clone https://gitclone.com/github.com/comfyanonymous/ComfyUI.git 这个…

JSON在线解析及格式化验证 - JSON.cn网站

JSON在线解析及格式化验证 - JSON.cn https://www.json.cn/

docker八大架构之应用服务集群架构

应用服务集群架构 在之前,一个应用层要负责所有的用户操作,但是有时用户增加后就会导致供不应求的现象(单个应用不足以支持海量的并发请求,高并发的时候站点响应变慢),这时就需要增加应用层服务器&#xf…

自动驾驶占据感知的综述:信息融合视角

24年5月香港理工的论文“A Survey on Occupancy Perception for Autonomous Driving: The Information Fusion Perspective“。 3D 占据感知技术旨在观察和理解自动驾驶车辆的密集 3D 环境。该技术凭借其全面的感知能力,正在成为自动驾驶感知系统的发展趋势&#x…

简单实现---基于STL的演讲比赛流程管理系统(C++实现)

前言 事先声明:本文章中编写的代码仅用于学习算法思想和编写基础形式使用,并未进行太多的代码优化,因此,若需要对代码进行优化以及异常处理的小伙伴们,可自行添加相关操作,谢谢! 一、题…

绘图软件 excalidraw 部署流程 [ Ubuntu 22.4已验证 ]

文章目录 前置一、修改DNS二、添加docker 镜像三、pull excalidraw/excalidraw四、启动一个docker五、访问 简介:这篇文章介绍的是一份开源的绘图软件的部署过程 前置 安装docker:Ubuntu 系统,Docker 安装步骤 [Ubuntu 22.4已验证] 其他系…

回炉重造java----JVM

为什么要使用JVM ①一次编写,到处运行,jvm屏蔽字节码与底层的操作差异 ②自动内存管理,垃圾回收功能 ③数组下边越界检查 ④多态 JDK,JRE,JVM的关系 JVM组成部分 JVM的内存结构 《一》程序计数器(PC Register) 作用…

谷歌Gboard应用的语言模型创新:提升打字体验的隐私保护技术

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

浦语大模型笔记

书生浦语大模型全链路开源体系 浦语大模型全链路开源体系大模型成为发展通用人工智能的重要途径书生浦语 2.0(InternLM2)核心理念书生浦语 2.0(InternLM2)的主要亮点主要亮点 1:超长上下文支持主要亮点 2:性…

网络库-libevent介绍

1.简介 libevent是一个事件驱动的网络库,主要用于构建可扩展的网络服务器。它提供了跨平台的API,支持多种事件通知机制,如select、poll、epoll、kqueue等。 主要组件 event: 表示一个具体的事件,包括事件类型、事件回调等。eve…

大模型管理工具:SWIFT

目录 一、SWIFT 介绍 二、SWIFT 安装 2.0 配置环境(可选) 2.1 使用pip进行安装 2.2 源代码安装 2.3 启动 WEB-UI 三、部署模型 3.0 deploy命令参数 3.1 原始模型 3.2 微调后模型 一、SWIFT 介绍 SWIFT(Scalable lightWeight Infrastructure for Fine-Tuni…

golang创建式设计模式------单例模式

目录导航 1.单例模式1)什么是单例模式 2)使用场景3)实现方式1.懒汉式单例模式2.饿汉式3.双重检查式4.sysc.Once式 4)实践案例5)优缺点分析 1.单例模式 1)什么是单例模式 单例模式(Singleton Pattern)是一种常用的设计模式。单例模式的类提供了一种访问其唯一对象的方法&#…

UML快速入门篇

目录 1. UML概述 2. 类的表示 2.1. 类的表示 2.2. 抽象类的表示 2.3. 接口的表示 3. 类的属性,方法,访问权限的表示 3.1. 类的属性 3.2. 类的方法 3.3. 类的权限 4. 类的关联 4.1. 单向关联 4.2. 双向关联 4.3. 自关联 4.4. 类的聚合 4.5.…

sipeed 的 MaixCam显示图片

WiFi联网后,把固件升级到最新 一根tpyc-c连接线为MaixCam供电,点击液晶屏settings 在WiFi中设置确保联网,在更新MaixPy中升级固件 可以选择国内源加速,将固件升级到最新版 MaixVision的操作 1,在MaixVision左下角…

C语言(指针)6

Hi~!这里是奋斗的小羊,很荣幸各位能阅读我的文章,诚请评论指点,关注收藏,欢迎欢迎~~ 💥个人主页:小羊在奋斗 💥所属专栏:C语言 本系列文章为个人学习笔记&#x…