目录
五. 函数重载
1、参数类型不同
2、参数个数不同
3、参数类型顺序不同
C++支持函数重载的原理--名字修饰(name Mangling)
为什么C++支持函数重载,而C语言不支持函数重载呢?
六. 引用
6.1 概念
6.2 引用特性
6.3 常引用
6.4 使用场景
1. 做参数
2. 做返回值
3.下面代码输出什么结果?为什么?
6.5. 传值、传引用效率比较
6.6 引用和指针的区别(具体查看汇编底层)
七. 内联函数
7.1 概念
7.2 特性
八. auto关键字(C++11)
8.1 类型别名思考
8.2 auto简介
8.3 auto的使用细则
1. auto与指针和引用结合起来使用
2. 在同一行定义多个变量
8.3 auto不能推导的场景
1. auto不能作为函数的参数
2. auto不能直接用来声明数组
3. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
4. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有 lambda表达式等进行配合使用。
九. 基于范围的for循环(C++11)
9.1 范围for的语法
9.2 范围for的使用条件
1. for循环迭代的范围必须是确定的
2. 迭代的对象要实现++和==的操作。
十. 指针空值---nullptr(C++11)
五. 函数重载
函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这 些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类型 不同的问题。
1、参数类型不同
#include<iostream> using namespace std; // 1、参数类型不同 int Add(int left, int right) { cout << "int Add(int left, int right)" << endl; return left + right; } double Add(double left, double right) { cout << "double Add(double left, double right)" << endl; return left + right; }
2、参数个数不同
#include<iostream> using namespace std; // 2、参数个数不同 void f() { cout << "f()" << endl; } void f(int a) { cout << "f(int a)" << endl; }
3、参数类型顺序不同
void f(int a, char b) { cout << "f(int a,char b)" << endl; } void f(char b, int a) { cout << "f(char b, int a)" << endl; } int main() { Add(10, 20); Add(10.1, 20.2); f(); f(10); f(10, 'a'); f('a', 10); return 0; }
C++支持函数重载的原理--名字修饰(name Mangling)
为什么C++支持函数重载,而C语言不支持函数重载呢?
ok了老铁(请看vcr)!!!!!!!链接可以打开
比特对c与c++支持与不支持函数重载的解释
六. 引用
6.1 概念
引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间,它和它引用的变量共用同一块内存空间。
比如:尚家辉,在家叫"帅辉",学校里人称"尚欧巴"。
类型& 引用变量名(对象名) = 引用实体;
void TestRef() { int a = 10; int& ra = a;//<====定义引用类型 printf("%p\n", &a); printf("%p\n", &ra); }
注意:引用类型必须和引用实体是同种类型的
6.2 引用特性
1. 引用在定义时必须初始化
2. 一个变量可以有多个引用
3. 引用一旦引用一个实体,再不能引用其他实体
void TestRef() { int a = 10; // int& ra; // 该条语句编译时会出错 int& ra = a; int& rra = a; printf("%p %p %p\n", &a, &ra, &rra); }
6.3 常引用
void TestConstRef() { const int a = 10; //int& ra = a; // 该语句编译时会出错,a为常量 const int& ra = a; // int& b = 10; // 该语句编译时会出错,b为常量 const int& b = 10; double d = 12.34; //int& rd = d; // 该语句编译时会出错,类型不同 const int& rd = d; }
6.4 使用场景
1. 做参数
void Swap(int& left, int& right) { int temp = left; left = right; right = temp; }
2. 做返回值
int& Count() { static int n = 0; n++; // ... return n; }
3.下面代码输出什么结果?为什么?
注意:
如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用 引用返回,如果已经还给系统了,则必须使用传值返回。
int& Add(int a, int b) { int c = a + b; return c; } int main() { int& ret = Add(1, 2); Add(3, 4); cout << "Add(1, 2) is :"<< ret <<endl; return 0; }
6.5. 传值、传引用效率比较
以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直 接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效 率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。
通过下述代码的比较,发现传值和指针在作为传参以及返回值类型上效率相差很大。 |
值和引用的作为函数参数类型的性能比较
#include <time.h> struct A{ int a[10000]; }; void TestFunc1(A a){} void TestFunc2(A& a){} void TestRefAndValue() { A a; // 以值作为函数参数 size_t begin1 = clock(); for (size_t i = 0; i < 10000; ++i) TestFunc1(a); size_t end1 = clock(); // 以引用作为函数参数 size_t begin2 = clock(); for (size_t i = 0; i < 10000; ++i) TestFunc2(a); size_t end2 = clock(); // 分别计算两个函数运行结束后的时间 cout << "TestFunc1(A)-time:" << end1 - begin1 << endl; cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl; }
值和引用的作为返回值类型的性能比较
#include <time.h> struct A{ int a[10000]; }; A a; // 值返回 A TestFunc1() { return a;} // 引用返回 A& TestFunc2(){ return a;} void TestReturnByRefOrValue() { // 以值作为函数的返回值类型 size_t begin1 = clock(); for (size_t i = 0; i < 100000; ++i) TestFunc1(); size_t end1 = clock(); // 以引用作为函数的返回值类型 size_t begin2 = clock(); for (size_t i = 0; i < 100000; ++i) TestFunc2(); size_t end2 = clock(); // 计算两个函数运算完成之后的时间 cout << "TestFunc1 time:" << end1 - begin1 << endl; cout << "TestFunc2 time:" << end2 - begin2 << endl; }
6.6 引用和指针的区别(具体查看汇编底层)
在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。
int main() { int a = 10; int& ra = a; cout<<"&a = "<<&a<<endl; cout<<"&ra = "<<&ra<<endl; return 0; }
在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。
int main() { int a = 10; int& ra = a; ra = 20; int* pa = &a; *pa = 20; return 0; }
我们来看下引用和指针的汇编代码对比:
引用和指针的不同点:
1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
2. 引用在定义时必须初始化,指针没有要求
3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何 一个同类型实体
4. 没有NULL引用,但有NULL指针
5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32 位平台下占4个字节)
6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
7. 有多级指针,但是没有多级引用
8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
9. 引用比指针使用起来相对更安全
七. 内联函数
7.1 概念
以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调 用建立栈帧的开销,内联函数提升程序运行的效率。
如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的 调用。
查看方式:
1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add
2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不 会对代码进行优化,以下给出vs2013的设置方式)
7.2 特性
1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会 用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运 行效率。 2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建 议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不 是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。 3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址 了,链接就会找不到(不仅符号表 不进行链接) |
下图为 《C++prime》第五版关于inline的建议:
ps3:
// F.h #include <iostream> using namespace std; inline void f(int i); // F.cpp #include "F.h" void f(int i) { cout << i << endl; } // main.cpp #include "F.h" int main() { f(10); return 0; } // 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl f(int)" (?f@@YAXH@Z),该符号在函数 _main 中被引用
八. auto关键字(C++11)
8.1 类型别名思考
随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:
1. 类型难于拼写
2. 含义不明确导致容易出错
#include <string> #include <map> int main() { std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange", "橙子" }, {"pear","梨"} }; std::map<std::string, std::string>::iterator it = m.begin(); while (it != m.end()) { //.... } return 0; }
std::map<std::string,std::string>::iterator 是一个类型,但是该类型太长了,特别容 易写错。聪明的同学可能已经想到:可以通过typedef给类型取别名,比如:
#include <string> #include <map> typedef std::map<std::string, std::string> Map; int main() { Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} }; Map::iterator it = m.begin(); while (it != m.end()) { //.... } return 0; }
使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:
typedef char* pstring; int main() { const pstring p1; // 编译成功还是失败? const pstring* p2; // 编译成功还是失败? return 0; }
其中p1必须先初始化(必须初始化常量对象),现在会编译不通过
原因:
const pstring* p2中const修饰的*p 是指针指向的内容
而const pstring p1有点类似你char* const p1 (const修饰的指针是必须要被初始化的)
在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的 类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。
8.2 auto简介
在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的 是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一 个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。
int TestAuto()
{
return 10;
}
int main()
{
int a = 10;
auto b = a;
auto c = 'a';
auto d = TestAuto();
cout << typeid(b).name() << endl;
cout << typeid(c).name() << endl;
cout << typeid(d).name() << endl;
//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
return 0;
}
【注意】: 使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto 的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编 译期会将auto替换为变量实际的类型。 |
8.3 auto的使用细则
1. auto与指针和引用结合起来使用
用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&
int main() { int x = 10; auto a = &x; auto* b = &x; auto& c = x; cout << typeid(a).name() << endl; cout << typeid(b).name() << endl; cout << typeid(c).name() << endl; *a = 20; *b = 30; c = 40; return 0; }
2. 在同一行定义多个变量
当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译 器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。
void TestAuto() { auto a = 1, b = 2; auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同 }
8.3 auto不能推导的场景
1. auto不能作为函数的参数
// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导 void TestAuto(auto a) {}
2. auto不能直接用来声明数组
void TestAuto() { int a[] = {1,2,3}; auto b[] = {4,5,6}; }
3. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
4. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有 lambda表达式等进行配合使用。
九. 基于范围的for循环(C++11)
9.1 范围for的语法
在C++98中如果要遍历一个数组,可以按照以下方式进行:
void TestFor() { int array[] = { 1, 2, 3, 4, 5 }; for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i) array[i] *= 2; for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p) cout << *p << endl; }
对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因 此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范 围内用于迭代的变量,第二部分则表示被迭代的范围。
void TestFor() { int array[] = { 1, 2, 3, 4, 5 }; for(auto& e : array) e *= 2; for(auto e : array) cout << e << " "; return 0; }
注意:
与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。
9.2 范围for的使用条件
1. for循环迭代的范围必须是确定的
对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供 begin和end的方法,begin和end就是for循环迭代的范围。
注意:以下代码就有问题,因为for的范围不确定
void TestFor(int array[]) { for(auto& e : array) cout<< e <<endl; }
2. 迭代的对象要实现++和==的操作。
(关于迭代器这个问题,以后会讲,现在提一下,没办法讲清楚,现在大家了解一下就可以了)
十. 指针空值---nullptr(C++11)
声明一个变量时最好给该变量一个合适的初始值,否则可能会出现 不可预料的错误,比如未初始化的指针。
如果一个指针没有合法的指向,我们基本都是按照如下 方式对其进行初始化:
void TestPtr() { int* p1 = NULL; int* p2 = 0; // …… }
NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:
#ifndef NULL #ifdef __cplusplus #define NULL 0 #else #define NULL ((void *)0) #endif #endif
可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何 种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:
void f(int) { cout<<"f(int)"<<endl; } void f(int*) { cout<<"f(int*)"<<endl; } int main() { f(0); f(NULL); f((int*)NULL); return 0; }
程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的 初衷相悖。
在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器 默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。
注意:
1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入 的。
2. 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。
3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。