HTTP1.1的优化措施

3.2 HTTP/1.1 如何优化?

可以从以下三个方面来优化http/1.1协议:

  • 尽量避免发送 HTTP 请求

  • 在需要发送 HTTP 请求时,考虑如何减少请求次数

  • 减少服务器的 HTTP 响应的数据大小

避免发送HTTP请求

对于一些具有重复性的 HTTP 请求,比如每次请求得到的数据都一样的,我们可以把这对「请求-响应」的数据都缓存在本地,那么下次就直接读取本地的数据,不必在通过网络获取服务器的响应了,这样的话 HTTP/1.1 的性能肯定肉眼可见的提升。

那么缓存技术是如何做的呢?

客户端会把第一次请求以及响应的数据保存在本地磁盘上,其中将请求的 URL 作为 key,而响应作为 value,两者形成映射关系。

这样当后续发起相同的请求时,就可以先在本地磁盘上通过 key 查到对应的 value,也就是响应,如果找到了,就直接从本地读取该响应。毋庸置疑,读取本地磁盘的速度肯定比网络请求快得多,如下图:

img

但是如果缓存的响应不是最新的,此时也有解决办法

服务器在发送HTTP响应时会估算一个过期时间,并把这个信息放到响应头部中,这样客户端在查看相应头部信息时,一旦发现缓存的相应是过期的,就会重新发送网络请求。

如果客户端在第一次请求得到响应头部中发现该响应过期了,客户端就会重新发送请求,此时客户端不需要带上这个资源一起请求,而只需要在请求的 Etag 头部带上第一次请求的响应头部中的摘要,这个摘要是唯一标识响应的资源,当服务器收到请求后,会将本地资源的摘要与请求中的摘要做个比较。

如果不同,那么说明客户端的缓存已经没有价值,服务器在响应中带上最新的资源。

如果相同,说明客户端的缓存还是可以继续使用的,那么服务器仅返回不含有包体的 304 Not Modified 响应,告诉客户端仍然有效,这样就可以减少响应资源在网络中传输的延时,否则返回最新资源并加上200 OK,

img

缓存真的是性能优化的一把万能钥匙,小到 CPU Cache、Page Cache、Redis Cache,大到 HTTP 协议的缓存。

减少HTTP请求次数

  • 减少重定向

  • 合并请求

  • 延迟发送请求

减少重定向次数

重定向请求指的是服务器上的一个资源可能由于迁移、维护等原因从url1移到了url2,而客户端并不知情,它还是继续请求url1,此时服务器会通过 302响应码和 Location 头部,告诉客户端该资源已经迁移到了url2了,于是客户端需要再发送url2请求获得服务器资源。

那么,如果重定向请求越多,那么客户端就要多次发起 HTTP 请求,每一次的 HTTP 请求都得经过网络,这无疑会越降低网络性能。

另外,服务端这一方往往不只有一台服务器,比如源服务器上一级是代理服务器,然后代理服务器才与客户端通信,这时客户端重定向就会导致客户端与代理服务器之间需要 2 次消息传递,如下图:

img

如果重定向的工作交由代理服务器完成,就能减少 HTTP 请求次数了,即将重定向的工作交给代理服务器来做如下图:

img

而且当代理服务器知晓了重定向规则后,可以进一步减少消息传递次数,如下图:

img

除了 302 重定向响应码,还有其他一些重定向的响应码,你可以从下图看到:

img

其中,301308 响应码是告诉客户端可以将重定向响应缓存到本地磁盘,之后客户端就自动用url2 替代 url1 访问服务器的资源。

合并请求

把多个访问小文件的请求合并成一个大的请求,虽然传输的总资源还是一样,但是减少请求,也就意味着减少了重复发送的 HTTP 头部

另外由于 HTTP/1.1 是请求响应模型,如果第一个发送的请求,未收到对应的响应,那么后续的请求就不会发送(PS:HTTP/1.1 管道模式是默认不使用的,所以讨论 HTTP/1.1 的队头阻塞问题,是不考虑管道模式的),于是为了防止单个请求的阻塞,所以一般浏览器会同时发起 5-6 个请求,每一个请求都是不同的 TCP 连接,那么如果合并了请求,也就会减少 TCP 连接的数量,因而省去了 TCP 握手和慢启动过程耗费的时间

看看合并请求的几种方式。

有的网页会含有很多小图片、小图标,有多少个小图片,客户端就要发起多少次请求。那么对于这些小图片,我们可以考虑使用 CSS Image Sprites 技术把它们合成一个大图片,这样浏览器就可以用一次请求获得一个大图片,然后再根据 CSS 数据把大图片切割成多张小图片。

图来源于:墨染枫林的CSDN

这种方式就是通过将多个小图片合并成一个大图片来减少 HTTP 请求的次数,以减少 HTTP 请求的次数,从而减少网络的开销

除了将小图片合并成大图片的方式,还有服务端使用 webpack 等打包工具将 js、css 等资源合并打包成大文件,也是能达到类似的效果。

另外,还可以将图片的二进制数据用 base64 编码后,以 URL 的形式嵌入到 HTML 文件,跟随 HTML 文件一并发送.

<image src=" ... />

这样客户端收到 HTML 后,就可以直接解码出数据,然后直接显示图片,就不用再发起图片相关的请求,这样便减少了请求的次数。

可以看到,合并请求的方式就是合并资源,以一个大资源的请求替换多个小资源的请求

但是这样的合并请求会带来新的问题,当大资源中的某一个小资源发生变化后,客户端必须重新下载整个完整的大资源文件,这显然带来了额外的网络消耗

延迟发送请求

一般 HTML 里会含有很多 HTTP 的 URL,当前不需要的资源,我们没必要也获取过来,于是可以通过「按需获取」的方式,来减少第一时间的 HTTP 请求次数。

请求网页的时候,没必要把全部资源都获取到,而是只获取当前用户所看到的页面资源,当用户向下滑动页面的时候,再向服务器获取接下来的资源,这样就达到了延迟发送请求的效果

减少HTTP响应的数据大小

对于 HTTP 的请求和响应,通常 HTTP 的响应的数据大小会比较大,也就是服务器返回的资源会比较大。

于是,我们可以考虑对响应的资源进行压缩,这样就可以减少响应的数据大小,从而提高网络传输的效率。

压缩的方式一般分为 2 种,分别是:

  • 无损压缩

  • 有损压缩

无损压缩

无损压缩针对的是像文本文件、程序可执行文件、程序源代码等。

首先,我们针对代码的语法规则进行压缩,因为通常代码文件都有很多换行符或者空格,这些是为了帮助程序员更好的阅读,但是机器执行时并不要这些符,把这些多余的符号给去除掉。

接下来,就是无损压缩了,需要对原始资源建立统计模型,利用这个统计模型,将常出现的数据用较短的二进制比特序列表示,将不常出现的数据用较长的二进制比特序列表示,生成二进制比特序列一般是「霍夫曼编码」算法。

gzip 就是比较常见的无损压缩。客户端支持的压缩算法,会在 HTTP 请求中通过头部中的 Accept-Encoding 字段告诉服务器:

Accept-Encoding: gzip, deflate, br

服务器收到后,会从中选择一个服务器支持的或者合适的压缩算法,然后使用此压缩算法对响应资源进行压缩,最后通过响应头部中的 Content-Encoding 字段告诉客户端该资源使用的压缩算法。

Content-Encoding: gzip

gzip 的压缩效率相比 Google 推出的 Brotli 算法还是差点意思,也就是上文中的 br,所以如果可以,服务器应该选择压缩效率更高的 br 压缩算法

有损压缩

有损压缩针对的像是图片、音视频等,将次要的数据舍弃,牺牲一些质量来减少数据量,提高压缩比

资源的压缩程度可以由Accept-Encoding字段指定,而HTTP请求头部中的Accept字段中的q质量因子可以告知服务器接收资源的优先级,

Accept: text/html;q=1.0, text/*;q=0.8, image/gif;q=0.6, image/jpeg;q=0.4, image/*;q=0.2

这代表优先接收文本html等数据,等网络情况支持的情况下再去返回其他类型的数据

关于图片的压缩,目前压缩比较高的是 Google 推出的 WebP 格式

相同图片质量下,WebP 格式的图片大小都比 Png 格式的图片小,所以对于大量图片的网站,可以考虑使用 WebP 格式的图片,这将大幅度提升网络传输的性能。

关于音视频的压缩,音视频主要是动态的,每个帧都有时序的关系,通常时间连续的帧之间的变化是很小的。

比如,一个在看书的视频,画面通常只有人物的手和书桌上的书是会有变化的,而其他地方通常都是静态的,于是只需要在一个静态的关键帧,使用增量数据来表达后续的帧,这样便减少了很多数据,提高了网络传输的性能。对于视频常见的编码格式有 H264、H265 等,音频常见的编码格式有 AAC、AC3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/615968.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络】数据链路层的功能

数据链路层的基本功能&#xff1a; 封装成帧透明传输差错检测 数据链路层使用的信道主要有两种 点对点信道——PPP协议广播信道——CSMA/CD协议(有线局域网)、CSMA/CA协议(无线局域网) 数据链路层所处的地位 从图中可以看出&#xff0c;数据从主机H1送到主机H2需要在路径中…

苍穹外卖项目---------收获以及改进(9-12)

①Spring Task-------实现系统定时任务 概念&#xff1a; 应用场景&#xff1a; 使用步骤&#xff1a; 实现订单超时和前一天派送中的订单的自动任务处理&#xff1a; Component Slf4j public class Mytask {Autowiredprivate OrderServiceimpl orderServiceimpl;/*** 处理订…

05-11 周六 一键完成FastBuild镜像部署功能的开发

05-11 周六 一键完成FastBuild镜像部署功能的开发 时间版本修改人描述2024年5月11日21:50:15V0.1宋全恒新建文档 简介 注&#xff0c;需要提前完成从DockerService到FastBuild主机的免密&#xff0c;因为脚本使用了ssh命令。 博客描述04-22 周日 阿里云-瑶光上部署FastBuild过…

最大子序列的分数

题目链接 最大子序列的分数 题目描述 注意点 n nums1.length nums2.length从nums1和nums2中选一个长度为k的子序列对应的下标对nums1中下标对应元素求和&#xff0c;乘以nums2中下标对应元素的最小值得到子序列的分数0 < nums1[i], nums2[j] < 1000001 < k < …

MVCC 详解

介绍 MVCC&#xff0c;全称 Multi-Version Concurrency Control&#xff0c;即多版本并发控制 MVCC的目的主要是为了提高数据库并发性能&#xff0c;用更好的方式去处理读-写冲突&#xff0c;做到即使有读写冲突时&#xff0c;也能做到不加锁。 这里的多版本指的是数据库中同时…

Django项目运行报错:ModuleNotFoundError: No module named ‘MySQLdb‘

解决方法&#xff1a; 在__init__.py文件下&#xff0c;新增下面这段代码 import pymysql pymysql.install_as_MySQLdb() 注意&#xff1a;确保你的 python 有下载 pymysql 库&#xff0c;没有的话可以使用 pip install pymysql安装 原理&#xff1a;用pymysql来代替mysqlL…

Mysql数据库的基础学习

为什么使用数据库&#xff1f; 1.持久化&#xff1a;将数据保存到可掉电式存储设备中以供使用。 数据库相关概念&#xff1a; DB:数据库&#xff08;Databass&#xff09;即存储数据的仓库&#xff0c;本质是一个文件系统&#xff0c;保存了一系列有组织的数据DBMS:数据库管…

【简单介绍下Sass】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

怎么使用远程桌面传输文件?

微软提供的远程桌面功能是一项强大的工具&#xff0c;可让您在同一网络下远程访问和管理其他计算机。除了远程控制&#xff0c;它还支持文件传输功能&#xff0c;为Windows用户提供了极大的便利。在接下来的内容中&#xff0c;我们将介绍如何使用远程桌面传输文件。 如何从远程…

求正方形中一角四边形的面积

求绿色四边形的面积&#xff1f; 假设大正方形的边长为2a 通过中间的点做十字的辅助线&#xff0c;假设两条辅助线的长度为xy,uv 所以 1/2ay1/2au42① 1/2ay1/2av38② 1/2ax1/2av28③ ①③ 1/2ay1/2au1/2ax1/2av4228 &#xff08;1/2ay1/2av&#xff09;1/2au1/2ax4228 代入…

SeetaFace6人脸特征提取与对比C++代码实现Demo

SeetaFace6包含人脸识别的基本能力&#xff1a;人脸检测、关键点定位、人脸识别&#xff0c;同时增加了活体检测、质量评估、年龄性别估计&#xff0c;并且顺应实际应用需求&#xff0c;开放口罩检测以及口罩佩戴场景下的人脸识别模型。 官网地址&#xff1a;https://github.co…

Hive Transaction事务表(含实现原理)

Hive Transaction事务表 在Hive中&#xff0c;事务表&#xff08;Transactional Tables&#xff09;允许用户执行事务性操作&#xff0c;包括ACID&#xff08;原子性、一致性、隔离性、持久性&#xff09;特性。事务表是在Hive 0.14版本引入的&#xff0c;并且在后续版本中不断…

conan2 基础入门(05)-(静态库动态库)(DebugRelease)

conan2 基础入门(05)-(静态库&动态库)(Debug&Release) 文章目录 conan2 基础入门(05)-(静态库&动态库)(Debug&Release)⭐准备预备文件和Code ⭐静态库&动态库静态库动态库 ⭐Debug&ReleaseReleaseDebug END视频教学settings.yml ⭐准备 本文均在windo…

以太ETH链市值机器人

在数字资产交易市场的浪潮中&#xff0c;如何高效地管理市值、提升交易流动性并保障资金安全&#xff0c;一直是交易所和项目方关注的焦点。市值管理机器人飞机//aishutuyu以太ETH链市值机器人凭借其卓越的功能和强大的安全保障&#xff0c;为数字资产交易市场带来了革命性的变…

GeoServer安装以及部署

GeoServer介绍 GeoServer是一个开源的服务器软件&#xff0c;用于共享和编辑地理空间数据。它支持多种地理空间数据格式&#xff0c;并且可以发布为多种服务格式&#xff0c;如Web Feature Service (WFS)、Web Map Service (WMS)、Web Coverage Service (WCS)&#xff0c;以及…

十天学会单片机可能吗?单片机入门需要多久?

在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「单片机的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01; 十天学“会”单片机&#xf…

前后端完全开源!功能丰富的在线教室项目:Agora Flat

Agora Flat&#xff1a;高效集成的在线教室解决方案&#xff0c;重塑互动学习新体验。- 精选真开源&#xff0c;释放新价值。 概览 Agora Flat是在GitHub平台上公开分享的一个全面开源项目&#xff0c;它精心设计为一个高性能的在线教室解决方案&#xff0c;旨在便捷地搭建支持…

Python装饰器带括号和不带括号的理解

装饰器是 Python 中一个强大且灵活的特性&#xff0c;允许用户在不修改原有函数或类定义的基础上&#xff0c;为其增加额外功能。 今天在尝试自定义 Python 装饰器的时候遇到了一个问题&#xff0c;因为以前一直是使用装饰器&#xff0c;基本没有自定义过装饰器&#xff0c;所…

KEIL declaration may not appear after executable statement in block

KEIL declaration may not appear after executable statement in block 这个问题也是比较经典&#xff0c;就是不允许你的变量定义位置不允许在下边的代码区域&#xff0c;只允许在最上方 ‍ 修改编码模式为C99解决 ‍ ​​

机器学习周报第41周

目录 摘要Abstract一、文献阅读1.1 摘要1.2 背景1.3 论文方法1.3.1 局部特征提取1.3.2 局部特征转换器 (LoFTR) 模块1.3.4 建立粗粒度匹配1.3.5 精细匹配 1.4 损失1.5 实现细节1.6 实验1.6.1 单应性估计1.6.2 相对位姿估计 二、论文代码总结 摘要 本周阅读了一篇特征匹配领域的…