stata空间计量模型基础+检验命令LM检验、sem、门槛+arcgis画图

目录

  1. 怎么安装stata命令 3
  2. 怎么使用已有的数据 4
  3. 数据编辑器中查看数据 4
  4. 怎么删除不要的列 4
  5. 直接将字符型变量转化为数值型的命令 4
  6. 改变字符长度 4
  7. 描述分析 4
  8. 取对数 5
  9. 相关性分析 5
  10. 单位根检验 5
  11. 权重矩阵标准化 6
  12. 计算泰尔指数 6
  13. 做核密度图 7
  14. Moran’s I 指数 8
  15. 空间计量模型 9
  16. LM检验 10
  17. Hausman 检验 11
  18. LR 检验 11
  19. 检验是否退化 13
  20. Wald 检验 14
  21. 交互效应 14
  22. 中介效应 15
  23. 门槛模型 19
  24. Arcgis画图 20
  25. 怎么选择想要的省份 24
  26. 空间引力模型 25
    1.怎么安装stata命令
    ① ssc install 名字
    在这里插入图片描述

②  search 名字
在打开的网页点击随便一个蓝色连接
在这里插入图片描述

点击click…
在这里插入图片描述
完成
在这里插入图片描述
2.怎么使用已有的数据
文件——更改工作目录——选择到数据所在的文件位置——确定
这样子就把当前的stata程序也保存在了同一目录下了,就可以使用在此文件的数据了
3.数据编辑器中查看数据

4.怎么删除不要的列
导入数据——use data——drop 名字
5.直接将字符型变量转化为数值型的命令
当数据格式是str,文本类型,所以呈现红色
destring 变量名,replace 新的名字(英文)
encode 变量,generate(yy)
6.改变字符长度
format var8 %16.0g *16.0意思是改为16个字符那么长
7.描述分析
ssc inatall asdoc *下载包
asdoc sum y en res tec con
在这里插入图片描述
8.取对数
foreach var of varlist y en res tec con{
gen ln ‘var’=log(‘var’)}
9.相关性分析
correlate y tec res en con
在这里插入图片描述
10.单位根检验
n大于t可以不做,想要检验一个名为“inflation”的变量是否存在单位根,可以运行以下命令
DF检验
dfuller inflation, trend
ADF检验
Dfuller inflation, lags(4)
面板数据单位根检验
如果p值小于显著性水平,则可以拒绝原假设并认为该变量不存在单位根。
xtunitroot llc lnrxrate , demean lags(aic 10) kernel(bartlett nwest)
demean表示去截面均值
lags(#) 表示序列变量差分的滞后项数#,其中截面滞后阶数相同
lags(aic #) lags(bic #) lags(hqic #)以aic bic hqic准则判定最大滞后阶数#
trend 表示加入趋势项并默认加入个体固定项
noconstant 表示趋势项与个体项都不加入
trend和noconstant都不加默认个体固定项
kernel(kernel_spec) 为核函数,估计渐进方差,具体设定包括 ba pa qu等)
11.权重矩阵标准化
spatwmat using W.dta, name(W) standardize *行标准化
12.计算泰尔指数
在这里插入图片描述
在这里插入图片描述

数据如下

在这里插入图片描述
. use data3.dta
. gen I城镇= 城镇人口* 城镇收入
. gen I农村= 农村人口农村收入
. sort I农村
. gen Iall= I城镇+ I农村
. gen Pall=城镇人口+ 农村人口
. gen I比例城镇= I城镇/ Iall
. gen I比例农村= I农村/ Iall
. gen p比例城镇= 城镇人口 / Pall
. gen p比例农村= 农村人口 / Pall
. gen theil= I比例城镇
ln( I比例城镇/ p比例城镇)+ I比例农村*ln( I比例农村/ p比例农村)
. sum thei
13.做核密度图
假如做城镇收入的核密度图
kdensity 城镇收入
更改坐标
. kdensity 城镇收入,xlabel(0.1(0.2)1.5) ylabel(0(0.2)1.5)
画多个核密度
. kdensity 城镇收入,addplot(kdensity 农村收入) xlabel(0.1(0.2)1.5) ylabel(0(0.2 )1.5) *两个图
. kdensity 城镇收入,addplot((kdensity 农村收入)(kdensity 城镇人口)) xlabel(0.1(0.2)1.5) ylabel(0(0.2)1.5) *三个图
在这里插入图片描述
增加坐标名
. kdensity 城镇收入,xlabel(0.1(0.2)1.5) ylabel(0(0.2)1.5) title(“收入核密度图”) xtitle(“时间”) ytitle(“密度”)

14.Moran’s I 指数
preserve
keep if year==2010
spatgsa y,weights(W) moran
restore
*把年份改了就可以做所有年的,结果中p值小于0.1则存在空间效应
在这里插入图片描述
15.空间计量模型
先把空间权重矩阵放进去
spatwmat using w.dta,name(w) standardize *标准化
clear
use data *使用数据
xtset id year
随机效应模型
xsmle y x a, model(sdm) wmat(W) type(both) nolog effects re
时间固定效应
xsmle y x a, model(sdm) wmat(W) type(time) nolog effects fe
个体固定效应
xsmle y x a, model(sdm) wmat(W) type(ind) nolog effects fe
双固定效应
xsmle y x a, model(sdm) wmat(W) type(both) nolog effects fe

  • effects表示显示直接效应、间接效应与总效应,noeffects不显示
    加上约束变量只看x1的空间效应
    xsmle y x1 x2 x3,wmat(W) durbin(x1) model(SDM) fe
    est ic看AIC BIC
    16.LM检验
    *判断是否存在空间依赖性,是才可以做空间计量模型
    *进行LM检验之前,需要将空间权重矩阵扩大
    use w / /W 为权重名称
    spcs2xt a1-a30,matrix(w)time(13) //扩大13倍
    spatwmat using wxt,name(W)
    clear
    use data *调用论文数据 data
    xtset id year
    reg y x1 x2 x3 a1 a2 a3 a4 *ols的结果
    spatdiag,weights(W) *LM检验
    在这里插入图片描述
    一般来说,P值小于0.1则显著。Spatial error为空间误差模型(SEM);Spatial lag为空间滞后模型(SAR);Robust为结果稳健的意思。Error的p值不显著,不适合空间误差,在这里空间滞后也不显著。
    在这里插入图片描述
    17.Hausman 检验
    检验用于选择固定效应模型还是随机效应模型,用没有扩大的权重矩阵
    方法一
    spatwmat using w.dta,name(w) standardize
    xsmle y en res tec con , fe model(sdm) wmat(w) hausman nolog noeffects
    在这里插入图片描述

p大于0.1选择随机,否则选择固定

方法二
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(both)
est store fe
xsmle y x1 x2 x3 a1 a2 a3 a4 , re model(sdm) wmat(W) nolog noeffects type(both)
est store re
hausman fe re

18.LR 检验
判断使用何种固定效应模型,检验地区固定效应、时间固定效应以及双固定效应,三种效应哪个最适合
spatwmat using W, name(W) standardize
个体固定
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(ind)
est store ind
时间固定
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(time)
est store time
双固定
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(both)
est store both
lrtest both ind,df(10) *看哪一个最优
lrtest both time,df(10)
操作案例
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(ind)
est store ind
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(time)
est store time
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(both)
est store both
lrtest both ind,df(10) *这才是判断哪一个最优,前面只需要跑一下就可以了
在这里插入图片描述
可见P值显著,那么拒绝使用个体,从而使用both
在这里插入图片描述
同理选择双向固定的both
19.检验是否退化
检验空间杜宾模型是否会退化为空间滞后模型和空间误差模型
操作案例
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(both)
est store sdm
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(both)
est store sar
. xsmle y en res tec con , fe model(sem) emat(w) nolog noeffects type(both)
est store sem
lrtest sdm sar *H0:SDM退化为SAR
如果P小于0.1显著,不可以退化,P值大于0.1,说明可以退化
lrtest sdm sem *H0:SDM退化为SEM
如果P小于0.1显著,不可以退化,P值大于0.1,说明可以退化
20.Wald 检验
clear all
use data
spatwmat using W.dta,name(W) standardize
xtset id year
xsmle y x a, fe model(sdm) wmat(W) type(both) nolog noeffects
Test x=a=0
Test [wx]x=0
Test[wx]x=[wx]a=0
estat ic
21.交互效应
在这里插入图片描述

gen c = a*b 产生a和b的交互项
然后做回归
gen c = en
res
reg y en res con c
11.中介效应
ba和c’同号则表示发挥了中介效应,异号则表示稀释效应。
在这里插入图片描述
中介效应方法一
reg tec en res con *在这里假设tec为中介变量,en是核心解释变量
在这里插入图片描述

看en所对应的p小于0.1可见是显著的
estimates store reg1 *结果存起来
reg y res con tec en
*tec所对应的p值小于0.1
*tec所对应的p值小于0.1
在这里插入图片描述

estimates store reg2
esttab reg1 reg2 using out.doc,mtitles r2(%6.2f) ar2(%6.2f)
*把结果输入到word其中r2为R方 ar2为调整的
*如果都显著说明存在中介效应,在这里reg2回归中en前面的系数是显著的,说明中介变量发挥的是部分效应,如果一个显著一个不显著需要用bootstrap检验,检验如下
bootstrap r(ind_eff) r(dir_eff),reps(1000):sgmediation y mv(tec) iv(en) cv(con res)
*mv里面是中介变量 iv是自变量 cv是控制变量
中介效应方法二
逐步回归
ssc install reghdfe
ssc install ftools
reghdfe y res en con,absorb(id year) vce(cluster id)
*在这里假设tec为中介变量,en的核心解释变量
est store m1
reghdfe tec res en con,absorb(id year) vce(cluster id)
est store m2
在这里插入图片描述

reghdfe y tec res en con,absorb(id year) vce(cluster id)
在这里插入图片描述

est store m3
esttab m1 m2 m3 using out.doc,mtitles r2(%6.2f) ar2(%6.2f)
*结果主要看第二步en前的系数是否显著和第三步tec前面的系数是否显著,两个都显著说明存在中介效应
如果一个显著一个不显著需要用bootstrap检验,检验如下
bootstrap r(ind_eff) r(dir_eff),reps(1000):sgmediation2 y mv(tec) iv(en) cv(con res)
sobel检验
net install sgmediation2, from(“https://tdmize.github.io/data/sgmediation2”)
*安装命令
Sgmediation2 y, mv(tec) iv(en) cv(con res) *cv里面不能用i.id,要手工产生
tab id,gen(id) *生成个体虚拟变量
ssgmediation2 y,mv( tec ) iv( en ) cv( con res id1-id30) quietly
*quietly表示不显示逐步回归
自助法
bootstrap r(ind_eff) r(dir_eff),reps(1000) bca:sgmediation2 y mv(tec) iv(en) cv(con res id1-id30)
*(ind_eff)表示间接效应,(dir_eff)表示直接效应,结果包括0就显著,不包括0就不显著
12.门槛模型
xthreg y c1 c2 c3 c4, rx(x1) qx(x2) thnum(1) bs(300) trim(0.01) grid(100)
其中,y表示被解释变量,c1-c4表示控制变量,rx表示核心解释变量,qx表示门槛变量,thnum表示门槛个数bs表示自举次数(理论上越多越好,但是考虑到效率,一般设置成300以上),trim表示门限分组内异常值去除的比例(一般选0.01或0.05),grid表示样本网格计算的网格数(一般设置成100或300),r表示用聚类稳健标准误
单一门槛
xthreg y c1 c2, rx(x1) qx(x2) thnum(1) bs(300) trim(0.01) grid(100) r
双门槛
xthreg y c1 c2, rx(x1) qx(x2) thnum(2) bs(300 300) trim(0.01 0.01)grid(100) r
三门槛
xthreg y c1 c2, rx(x1) qx(x2) thnum(3) bs(300 300 300) trim(0.01 0.01 0.01) grid(100) r
在这里插入图片描述
*这里的p不显著说明不存在门槛值
三门槛结果解读
在这里插入图片描述
*如果p都小于0.1,那么0.3685第一门槛值 0.1620 第二 0.2153第三,门槛值从小到大看是第几个门槛
在这里插入图片描述

*假设p值小于0.1,表示在门槛值小于第一门槛值时en对解释变量y的影响为0.31,介于第一和第二门槛值是en对y的影响是0.818,以此类推
13.Arcgis画图
蓝色➕插入地图信息
在这里插入图片描述
右键——连接
在这里插入图片描述
选择连接的文件
在这里插入图片描述
以NAME为连接字段 ——选择连接的文件
在这里插入图片描述
打开数据属性表可以看看连接情况
右键——点击属性——标注——字段选择(name)——应用
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
符号系统——数量

在这里插入图片描述
值(要画的数据) 色带自己选择喜欢的

在这里插入图片描述
怎么把局部的放大呢(显示南海这些区域)
插入——数据框——复制行政区 国界线——布局视图
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
插入——文本——输入标题名字
布局试图下——插入——比例尺——插入——指北针
在这里插入图片描述
14.怎么选择想要的省份
选择+shift(在知道地理位置的时候)
打开属性表——NAME_——获取唯一值——大写的IN依次点击省份名字用英文逗号隔开——右键——选择——所选建立图层
在这里插入图片描述
在这里插入图片描述
15.空间引力模型

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/614934.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Huffman编码的字符串统计及WPL计算

一、问题描述 问题概括: 给定一个字符串或文件,基于Huffman编码方法,实现以下功能: 1.统计每个字符的频率。 2.输出每个字符的Huffman编码。 3.计算并输出WPL(加权路径长度)。 这个问题要求对Huffman编码算…

在 Kubernetes 上运行 Apache Spark 进行大规模数据处理的实践

在刚刚结束的 Kubernetes Community Day 上海站,亚马逊云科技在云原生分论坛分享的“在 Kunernets 上运行 Apache Spark 进行大规模数据处理实践”引起了现场参与者的关注。开发者告诉我们,为了充分利用 Kubernetes 的高可用设计、弹性,在越来…

FFmpeg常用API与示例(四)——过滤器实战

1.filter 在多媒体处理中,filter 的意思是被编码到输出文件之前用来修改输入文件内容的一个软件工具。如:视频翻转,旋转,缩放等。 语法:[input_link_label1]… filter_nameparameters [output_link_label1]… 1、视…

凸优化理论学习二|凸函数及其相关概念

系列文章目录 凸优化理论学习一|最优化及凸集的基本概念 文章目录 系列文章目录一、凸函数(一)凸集(二)凸函数的定义及举例(三)凸函数的证明1、将凸函数限制在一条直线上2、判断函数是否为凸函数的一阶条件…

[每周一更]-(第96期):Rsync 用法教程:高效同步文件与目录

文章目录 一、引言二、rsync 基本概念三、介绍rsync 是什么?四、安装五、rsync 基本语法常见示例(默认ssh协议): 六、常用选项1. -a 或 --archive2. -v 或 --verbose3. -z 或 --compress4. --delete5. --exclude6. --exclude-from…

VR全景技术在养老院的应用优势浅析

随着时代的快速发展,人口老龄化越来越严重,如何利用VR技术提升养老服务的质量,成为了社会各界关注的焦点。为养老院拍摄制作VR全景,不仅能够为养老院的老人子女们跨越空间限制,实现与家人的情感连接,还可以…

做题杂记666

[XYCTF2024] 铜匠 题目描述: from Crypto.Util.number import * from secrets import flagm bytes_to_long(flag) m1 getRandomRange(1, m) m2 getRandomRange(1, m) m3 m - m1 - m2def task1():e 149p getPrime(512)q getPrime(512)n p * qd inverse(e,…

基于fastapi sqladmin开发,实现可动态配置admin

1. 功能介绍: 1. 支持动态创建表、类,属性,唯一约束、外键,索引,关系,无需写代码,快速创建业务对象; 2. 支持配置admin显示参数,支持sqladmin原生参数设置,动…

2203-简单点-ultralytics库解析-data模块

data模块 overview布局\_\_init__.pyfrom .base import BaseDataset\_\_all__ annotator.pyaugment.pyclass BaseTransformclass Composeclass BaseMixTransformclass 未完继续 overview布局 从上往下解析 __init__.py from .base import BaseDataset __init__.py 文件在 Pyt…

nc生成临时凭证配置

nc生成临时凭证配置 要实现的功能: 审批时生成临时凭证弃审时删除临时凭证 前台配置 后台配置 BillReflectorServiceImpl.java package nc.pubimpl.jych.qtsq.voucher;import java.util.ArrayList; import java.util.Collection; import java.util.HashMap; impo…

二、jacoco代码覆盖率工具

jacoco代码覆盖率工具 一、jacoco介绍二、常见的java代码覆盖率工具三、为什么选择jacoco四、jacoco的特点五、Jacoco 支持的覆盖率指标六、那些暂未支持的覆盖率指标七、jacoco技术原理八、Jacoco 下载与配置九、jacoco主要文件十、jacoco使用流程十一、jacoco单元测试实战1、…

用友畅捷通T+ keyEdit sql注入漏洞

产品介绍 畅捷通 T 是一款灵动,智慧,时尚的基于互联网时代开发的管理软件,主要针对中小型工贸与商贸企业,尤其适合有异地多组织机构(多工厂,多仓库,多办事处,多经销商)的…

记录一次接口优化的过程。接口响应时间从500s下降到5s。

记录一次接口优化的过程。接口响应时间从500s下降到5s。 接口说明: 该接口通过用户导入的一年内每天的厂区用电功率数据来计算用户安装储能设备后的收益情况。 用电功率数据具体为每15分钟一条,一年约有 12*30*24*4 34560 条。 代码循环情况为&…

旅游系统小程序基于Uniapp+FastAdmin+ThinkPHP(源码搭建/上线/运营/售后/更新)

一款基于UniappFastAdminThinkPHP开发的旅游系统,包含消费者端(手机端)、机构工作人员(手机端)、机构端(PC)、平台管理端(PC)。机构可以发布旅游线路、景点项目&#xff…

ASP.NET一个简单的媒体播放器的设计与实现

摘 要 本论文所描述的播放器是在Microsoft Visual Studio .NET 2003平台下利用Visual Basic.NET语言完成的。使用Visual Basic.NET提供的Windows Media Player控件以及文件处理,最终实现一款别致的,贴近用户操作习惯的媒体播放器。 该播放器实现了对WAV…

excel表格里,可以把百分号放在数字前面吗?

在有些版本里是可以的,这样做: 选中数据,鼠标右键,点击设置单元格格式,切换到自定义,在右侧栏输入%0,点击确定就可以了。 这样设置的好处是,它仍旧是数值,并且数值大小没…

进程间通信(二)

共享内存 当进程A和进程B有一块共享的内存空间时,这两个进程之间的数据交互就会变的很简单,只需要像读取自己内存空间中的元素一样去读取数据即可。实现共享内存进行数据交互的一般步骤: 创建/打开共享内存内存映射数据交换断开与共享内存的…

icap对flash的在线升级

文章目录 一、icap原语介绍(针对 S6 系列的 ICap),之后可以拓展到A7、K7当中去二、程序1设计2.1信号结构框图2.2 icap_delay设计2.3 icap_ctrl设计(可以当模板使用,之后修改关键参数即可) 三、程序2设计四、…

C++中调用python函数(VS2017+WIN10+Anaconda虚拟环境)

1.利用VS创建C空项目 step1 文件——新建——项目 step2 Visual C—— Windows桌面——Windows桌面向导 step3 选择空项目 step4 源文件——新建项——添加 step5 Visual C——C文件(.cpp) 2.配置环境 Step1. 更换成Release与X64 Step2. 打开项目属性&…

巨坑啊! before-upload返回false 会执行on-remove

通过对on-remove对应参数的打印,发现回调中的file参数有个status,若是是在before-upload中就被过滤了,就是ready,若是已经上传成功了去点击删除,status是success,就他了。 onRemove(file,fileList){if(file…