论文笔记:SUPERVISED CONTRASTIVE REGRESSION

2022arxiv的论文,没有中,但一作是P大图班本MIT博,可信度应该还是可以的

0 摘要

  • 深度回归模型通常以端到端的方式进行学习,不明确尝试学习具有回归意识的表示
    • 它们的表示往往是分散的,未能捕捉回归任务的连续性质。
  • 在本文中,我们提出了“监督对比回归”(Supervised Contrastive Regression,SupCR)的框架
    • 该框架通过将样本与目标距离进行对比来学习具有回归意识的表示
    • SupCR与现有的回归模型是正交的,并且可以与这些模型结合使用以提高性能
  • 在涵盖计算机视觉、人机交互和医疗保健领域的五个真实世界回归数据集上进行的大量实验表明,使用SupCR可以达到最先进的性能,并且始终在所有数据集、任务和输入模式上改进先前的回归基线。
    • SupCR还提高了对数据损坏的鲁棒性
    • 对减少的训练数据具有弹性
    • 改善了迁移学习的性能
    • 并且对未见过的目标有很好的泛化能力。

1 介绍

1.1 动机

  • 之前的回归问题
    • 都集中在以端到端的方式对最终预测进行约束
    • 并未明确考虑模型学到的表示
  • ——>学习的表示往往是分散的,未能捕捉回归任务中连续的关系
  • 图1(a)展示了在从网络摄像头户外图像预测天气温度的任务中,由L1损失学习的表示
    • L1模型学习的表示并没有呈现连续的真实温度值;相反,它按不同的摄像头以一种碎片化的方式进行分组。
      • 这种无序和碎片化的表示对于回归任务是次优的,甚至可能会妨碍性能,因为其中包含了干扰信息
  • 之前的表示学习都集中在分类问题上
    • 尤其是监督学习和对比学习
    • 如图1(b)所示,这些方法在上述视觉温度预测任务中学习的表示对于回归问题来说是次优的
      • 因为它忽略了回归任务中样本之间的连续顺序。

1.2 本文思路

  • 引入了“监督对比回归”(Supervised Contrastive Regression,SupCR)这一新的深度回归学习框架
    • 首先学习一个表示,确保嵌入空间中的距离与目标值的顺序相对应
      • 为了学习这样一个具有回归意识的表示,我们根据样本的标签/目标值距离将样本进行对比
    • 然后使用这个表示来预测目标值
  • 方法明确地利用样本之间的有序关系来优化下游回归任务的表示(如1(c)所示)
  • 此外,SupCR与现有的回归方法正交
    • 可以使用任何类型的回归方法将学习到的表示映射到预测值上。

2 方法

2.0 方法定义

  • 学习一个神经网络,由两部分组成

     

    • 特征encoder
    • 预测器p(\cdot):R^{d_e}\rightarrow R^{d_t} 从x \in X中预测y \in R^{d_t}
  •  对于给定的输入 batch,类似于对比学习,首先对数据进行两次数据增强,得到batch的两个view
    • 这两个view被输入到编码器f(·)中,为每个增强的输入数据获取一个de维特征嵌入
    • 监督对比回归损失L_{SupCR}是在这些特征嵌入上计算的
      • 为了将学习到的表示用于回归,冻结编码器f(·),然后在其之上训练预测器,使用回归损失(例如,L1损失)

2.1 监督对比回归损失

  • 大前提:希望损失函数能够确保嵌入空间中的距离与标签空间中的距离相对应
  • 给定N个数据组成的batch ,其中有input和label \{(x_n,y_n)\}_{n \in [N]}
    • 对该批数据应用数据增强,得到两个视图的batch
      • \tilde{x}_{2n}=t(x_n),\tilde{x}_{2n-1}=t'(x_n)
      • t和t'是两种数据增强方式
      • ——>得到两个视图下的batch\{(\tilde{x}_l,\tilde{y}_l)\}_{l \in [2N]}
        • \tilde{y}_{2n}=\tilde{y}_{2n-1}=y_n
    • 数据增强后的batch会被喂到encoder中,以获得相应的embedding
      • v_l=f(\tilde{x}_l)\in R^{d_e}, \forall n \in [2N]
  • 监督对比回归损失为

比如我们计算20这个样本的对比学习损失函数时,将30作为anchor的时候,会有两个负样本;将0作为anchor的时候,会有一个负样本

 2.2 理论证明

3 实验

3.1 五个实验

AgeDB
  • 从人脸图像预测年龄。
  • 包含了16,488张名人的图像和相应的年龄标签。
  • 年龄范围在0到101岁之间。
  • 数据集被分为12,208张训练图像、2140张验证图像和2140张测试图像。
TUAB
  • 从EEG静息态信号估计脑龄。
  • 包括1,385个21通道的EEG信号,采样频率为200Hz,来自年龄范围从0到95岁的个体。
  • 数据集被分为1,246个受试者的训练集和139个受试者的测试集。
MPIIFaceGaze
  • 从人脸图像估计注视方向。
  • 包含了213,659张从15名参与者收集的人脸图像
  • 将其划分为一个33,000张训练图像、6,000张验证图像和6,000张测试图像的数据集,参与者之间没有重叠。
  • 注视方向被描述为一个二维向量,第一维是俯仰角,第二维是偏航角。俯仰角的范围是-40°到10°,偏航角的范围是-45°到45°。
SkyFinder
  • 从户外网络摄像头图像预测温度。
  • 包含了由44台摄像头在每天上午11点左右拍摄的35,417张图像,天气和照明条件涵盖了广泛的范围。
  • 温度范围是-20°C到-49°C。
  • 数据集被分为28,373张训练图像、3,522张验证图像和3,522张测试图像。
IMDB-WIKI
  • 从人脸图像预测年龄
  • 包含了523,051张名人图像和相应的年龄标签。
  • 年龄范围在0到186岁之间(有些图像标签错误)。
  • 使用该数据集来测试方法对减少训练数据的弹性,迁移学习的性能以及对未见目标的泛化能力。

3.2 实验效果

 

 3.3 数据损坏的鲁棒性

使用ImageNet-C基准测试中的损坏生成过程来对AgeDB测试集进行19种不同强度级别的多样化损坏。

 3.4 训练数据的影响

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/61038.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MCU的类型和应用领域简介

MCU(Microcontroller Unit)根据存储器类型可分为无片内ROM型和带片内ROM型。无片内ROM型的芯片需要外接EPROM才能应用,而带片内ROM型则有不同的子类型,如片内EPROM型、MASK片内掩模ROM型和片内Flash型。 MCU还可以按照用途分为通…

策略模式——算法的封装与切换

1、简介 1.1、概述 在软件开发中,常常会遇到这种情况,实现某一个功能有多条途径。每一条途径对应一种算法,此时可以使用一种设计模式来实现灵活地选择解决途径,也能够方便地增加新的解决途径。为了适应算法灵活性而产生的设计模…

【分布式应用】ELK企业级日志分析系统

目录 一、ELK 简介 1.1 ELK各组件介绍 ElasticSearch: Kiabana: Logstash: 1.2 可以添加的其它组件: Filebeat: 缓存/消息队列(redis、kafka、RabbitMQ等): Fluentd&#xf…

向表中随机插入字符串数据

已知表 向该表中插入指定次数的随机字符串: 代码如下: DROP PROCEDURE sc //CREATE PROCEDURE sc(num INT) BEGIN DECLARE str VARCHAR(26) DEFAULT "abcdefghijklmnopqrstuvwxyz"; DECLARE cnt INT DEFAULT 0; DECLARE startIndex INT DEFAULT 1; DE…

React Native获取手机屏幕宽高(Dimensions)

import { Dimensions } from react-nativeconsole.log(Dimensions, Dimensions.get(window)) 参考链接: https://www.reactnative.cn/docs/next/dimensions#%E6%96%B9%E6%B3%95 https://chat.xutongbao.top/

【电源专题】充电IC与DC-DC有什么区别

充电IC和DC-DC一样使用很广泛,如手机、平板等需要电池供电的系统中,一般都会见到充电IC的身影。那么大家有没有考虑过一个问题。充电IC与DC-DC有什么区别? 首先如下所示为充电IC的两个阶段,一个阶段是恒流充电阶段,我们一般称之为CC阶段,另一个是恒压充电阶段,我们称之为…

EtherCAT转Profinet网关连接西门子PLC与凯福科技总线步进驱动器通讯

西门子S7-1200/1500系列的PLC,采用Profinet实时以太网通讯协议,需要连接带EtherCAT的通讯功能的伺服驱动器等设备,就必须进行通讯协议转换。捷米特JM-EIP-RTU系列的网关提供了,快速可行的解决方案 捷米特JM-ECTM-PN在PROFINET一侧…

学习左耳听风栏目90天——第一天 1-90(学习左耳朵耗子的工匠精神,对技术的热爱)【洞悉技术的本质,享受科技的乐趣】

洞悉技术的本质,享受科技的乐趣 第一篇,我的感受就是 耗叔是一个热爱技术,可以通过代码找到快乐的技术人。 作为it从业者,我们如何可以通过代码找到快乐呢?这是一个问题? 至少目前,我还没有这种…

wordpress发表文章时报错: rest_cannot_create,抱歉,您不能为此用户创建文章(已解决)

使用wordpress 的rest api发布文章,首先使用wp-json/jwt-auth/v1/token接口获取token,然后再使用/wp-json/wp/v2/posts 接口发表文章,但是使用axios请求时,却报错: 但是,我在postman上却是可以的&#xff0…

目标检测与跟踪 (1)- 机器人视觉与YOLO V8

目录 1、研究背景 2. 算法原理及对比 2.1 点对特征(Point Pairs) 2.2 模板匹配 2.3 霍夫森林 2.4 深度学习 3、YOLO家族模型演变 4、YOLO V8 1、研究背景 机器人视觉识别技术是移动机器人平台十分关键的技术,代表着机器人智能化、自动化…

C语言----动态内存分配(malloc calloc relloc free)超全知识点

目录 一.动态内存函数 1.malloc 2.free 3.calloc 4.malloc和calloc的区别 5.realloc 二.动态内存分配的常见错误 1.对null进行解引用操作 2.对动态开辟空间的越界访问 3.对非动态开辟内存使用free释放 4.使用free释放动态开辟内存的一部分 5.对同一块动态内存多次…

基于 Redux + TypeScript 实现强类型检查和对 Json 的数据清理

基于 Redux TypeScript 实现强类型检查和对 Json 的数据清理 突然像是打通了任督二脉一样就用了 generics 搞定了之前一直用 any 实现的类型…… 关于 Redux 的部分,这里不多赘述,基本的实现都在这里:Redux Toolkit 调用 API 的四种方式 和…

visio,word添加缺少字体,仿宋_GB2312、楷体_GB2312、方正小标宋简体等字体下载

一. 内容简介 visio,word添加缺少字体,仿宋_GB2312、楷体_GB2312、方正小标宋简体等字体下载 二. 软件环境 2.1 visio 三.主要流程 3.1 下载字体 http://www.downza.cn/ 微软官方给的链接好多字体没有,其他好多字体网站,就是给你看个样式&#xff…

【雕爷学编程】MicroPython动手做(31)——物联网之Easy IoT 2

1、物联网的诞生 美国计算机巨头微软(Microsoft)创办人、世界首富比尔盖茨,在1995年出版的《未来之路》一书中,提及“物物互联”。1998年麻省理工学院提出,当时被称作EPC系统的物联网构想。2005年11月,国际电信联盟发布《ITU互联网…

记一次ubuntu16误删libc.so.6操作的恢复过程

背景 操作系统:ubuntu16 glibc版本:2.23 修改原因: 经过一系列报错和手工构建之后,vulkansdk成功安装(起码运行./vulkansdu成功),在进行./vulkaninfo进行验证时,报错&#xff1a…

G-channel 实现低光图像增强

G-channel 之前研究低光图像增强时,看到一篇博客,里面介绍了一种方法,没有说明出处,也没有说明方法的名字,这里暂时叫做 G-channel 算法。 博客地址:低照度图像增强(附步骤及源码)…

vue+element中如何设置单个el-date-picker开始时间和结束时间关联

功能&#xff1a;选了开始时间&#xff0c;则结束时间只能选择开始时间之后的&#xff1b;选了结束时间&#xff0c;则开始时间只能选择结束时间之前的 重点是picker-options属性 图示&#xff1a; 代码展示: // body 内部<el-form-item><el-date-pickerv-model&qu…

AI抠图使用指南:Stable Diffusion WebUI Rembg实用技巧

抠图是图像处理工具的一项必备能力&#xff0c;可以用在重绘、重组、更换背景等场景。最近我一直在探索 Stable Diffusion WebUI 的各项能力&#xff0c;那么 SD WebUI 的抠图能力表现如何呢&#xff1f;这篇文章就给大家分享一下。 安装插件 作为一个生成式AI&#xff0c;SD…

一文学透设计模式——抽象工厂模式

创建者模式 抽象工厂模式 概念 抽象工厂模式是围绕一个超级工厂创建其他工厂。该超级工厂又称为其他工厂的工厂。这种类型的设计模式属于创建型模式&#xff0c;它提供了一种创建对象的最佳方式。 这是很多地方对于抽象工厂模式的描述&#xff0c;说实话感觉不是特别好懂。…

架构训练营学习笔记:5-2 负载均衡架构

多级负载架构 设计关键点 性能需求、维护复杂度之间做取舍。 一可以去掉F5、LVS &#xff1a; F5 是成本较高&#xff0c;LVS 是复杂&#xff0c;对于性能没那么高需求&#xff0c;可以去掉。 二 去掉ng: 服务网关服务 适应于初创公司快速验证&#xff0c;内部的 小系统…