C++容器之vector类

目录

  • 1.vector的介绍及使用
    • 1.1vector的介绍
    • 1.2vector的使用
      • 1.2.1 vector的定义
      • 1.2.2 vector iterator 的使用
      • 1.2.3 vector 空间增长问题
      • 1.2.4 vector 增删查改
      • 1.2.5vector 迭代器失效问题
      • 1.2.6 vector 在OJ中的使用。
  • 2.vector深度剖析及模拟实现
    • 2.1 std::vector的核心框架接口的模拟实现bit::vector
    • 2.2 使用memcpy拷贝问题
    • 2.2 动态二维数组理解

1.vector的介绍及使用

1.1vector的介绍

  1. vector是表示可变大小数组的序列容器。
  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素
    进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自
    动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小
    为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是
    一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大
    小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增
    长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。使用STL的三个境界:能用,明理,能扩展.

1.2vector的使用

vector学习时一定要学会查看文档:vector的文档介绍,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的

1.2.1 vector的定义

在这里插入图片描述

1.2.2 vector iterator 的使用

接口begin和end分别返回的是iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator
接口rbegin和rend分别返回的是最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator
在这里插入图片描述
在这里插入图片描述

1.2.3 vector 空间增长问题

在这里插入图片描述
capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。
这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
resize在开空间的同时还会进行初始化,影响size

// 测试vector的默认扩容机制
void TestVectorExpand()
{
size_t sz;
vector<int> v;
sz = v.capacity();
cout << "making v grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141
g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{
vector<int> v;
size_t sz = v.capacity();
v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
cout << "making bar grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}

1.2.4 vector 增删查改

在这里插入图片描述

1.2.5vector 迭代器失效问题

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)
对于vector可能会导致其迭代器失效的操作有:

  1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、push_back等
#include <iostream>
using namespace std;
#include <vector>
int main()
{
vector<int> v{1,2,3,4,5,6};
auto it = v.begin();
// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
// v.resize(100, 8);
// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
// v.reserve(100);
// 插入元素期间,可能会引起扩容,而导致原空间被释放
// v.insert(v.begin(), 0);
// v.push_back(8);
// 给vector重新赋值,可能会引起底层容量改变
v.assign(100, 8);
/*
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
赋值即可。
*/
while(it != v.end())
{
cout<< *it << " " ;
++it;
}
cout<<endl;
return 0;
}
  1. 指定位置元素的删除操作–erase
#include <iostream>
using namespace std;
#include <vector>
int main()
{
int a[] = { 1, 2, 3, 4 };
vector<int> v(a, a + sizeof(a) / sizeof(int));
// 使用find查找3所在位置的iterator
vector<int>::iterator pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据,导致pos迭代器失效。
v.erase(pos);
cout << *pos << endl; // 此处会导致非法访问
return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。
以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?

#include <iostream>
using namespace std;
#include <vector>
int main()
{
vector<int> v{ 1, 2, 3, 4 };
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
v.erase(it);
++it;
}
return 0;
}
int main()
{
vector<int> v{ 1, 2, 3, 4 };
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
it = v.erase(it);
else
++it;
}
return 0;
}

  1. 注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。
// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
vector<int> v{1,2,3,4,5};
for(size_t i = 0; i < v.size(); ++i)
cout << v[i] << " ";
cout << endl;
auto it = v.begin();
cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效
v.reserve(100);
cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
// 虽然可能运行,但是输出的结果是不对的
while(it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}
程序输出:
1 2 3 4 5
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5
// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
int main()
{
vector<int> v{1,2,3,4,5};
vector<int>::iterator it = find(v.begin(), v.end(), 3);
v.erase(it);
cout << *it << endl;
while(it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}
程序可以正常运行,并打印:
4 4
5
// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{
vector<int> v{1,2,3,4,5};
// vector<int> v{1,2,3,4,5,6};
auto it = v.begin();
while(it != v.end())
{
if(*it % 2 == 0)
v.erase(it);
++it;
}
for(auto e : v)
cout << e << " ";
cout << endl;
return 0;
}
========================================================
// 使用第一组数据时,程序可以运行
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
1 3 5
=========================================================
// 使用第二组数据时,程序最终会崩溃
[sly@VM-0-3-centos 20220114]$ vim testVector.cpp
[sly@VM-0-3-centos 20220114]$ g++ testVector.cpp -std=c++11
[sly@VM-0-3-centos 20220114]$ ./a.out
Segmentation fault

从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在begin和end范围内,肯定会崩溃的
4. 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效

#include <string>
void TestString()
{
string s("hello");
auto it = s.begin();
// 放开之后代码会崩溃,因为resize到20会string会进行扩容
// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
// 后序打印时,再访问it指向的空间程序就会崩溃
//s.resize(20, '!');
while (it != s.end())
{
cout << *it;
++it;
}
cout << endl;
it = s.begin();
while (it != s.end())
{
it = s.erase(it);
// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
// it位置的迭代器就失效了
// s.erase(it);
++it;
}
}

迭代器失效解决办法:在使用前,对迭代器重新赋值即可.

1.2.6 vector 在OJ中的使用。

  1. 只出现一次的数字i
class Solution {
public:
int singleNumber(vector<int>& nums) {
int value = 0;
for(auto e : v) {value ^= e; }
return value;
}
};
  1. 杨辉三角OJ
// 涉及resize / operator[]
// 核心思想:找出杨辉三角的规律,发现每一行头尾都是1,中间第[j]个数等于上一行[j-1]+[j]
class Solution {
public:
vector<vector<int>> generate(int numRows) {
vector<vector<int>> vv(numRows);
for(int i = 0; i < numRows; ++i)
{
vv[i].resize(i+1, 1);
}
for(int i = 2; i < numRows; ++i)
{
for(int j = 1; j < i; ++j)
{
vv[i][j] = vv[i-1][j] + vv[i-1][j-1];
}
}
return vv;
}
};

总结:通过上面的练习我们发现vector常用的接口更多是插入和遍历。遍历更喜欢用数组operator[i]的形式访问,因为这样便捷。课下自己实现一遍上面课堂讲解的OJ练习,然后请自行完成下面题目的OJ练习。以此增强学习vector的使用.

2.vector深度剖析及模拟实现

在这里插入图片描述
在这里插入图片描述

2.1 std::vector的核心框架接口的模拟实现bit::vector

#pragma once

#include <iostream>
using namespace std;
#include <assert.h>

// 注意这里namespace大家下去就不要取名为bit了,否则被面试官看到问bit是啥就尴尬了
namespace bit
{
	template<class T>
	class vector
	{
	public:
		// Vector的迭代器是一个原生指针
		typedef T* iterator;
		typedef const T* const_iterator;

		///
		// 构造和销毁
		vector()
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{}

		vector(size_t n, const T& value = T())
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{
			reserve(n);
			while (n--)
			{
				push_back(value);
			}
		}

		/*
		* 理论上将,提供了vector(size_t n, const T& value = T())之后
		* vector(int n, const T& value = T())就不需要提供了,但是对于:
		* vector<int> v(10, 5);
		* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型
		* 就不会走vector(size_t n, const T& value = T())这个构造方法,
		* 最终选择的是:vector(InputIterator first, InputIterator last)
		* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int
		* 但是10和5根本不是一个区间,编译时就报错了
		* 故需要增加该构造方法
		*/
		vector(int n, const T& value = T())
			: _start(new T[n])
			, _finish(_start+n)
			, _endOfStorage(_finish)
		{
			for (int i = 0; i < n; ++i)
			{
				_start[i] = value;
			}
		}

		// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器
		// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器
		template<class InputIterator>
		vector(InputIterator first, InputIterator last)
		{
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

		vector(const vector<T>& v)
			: _start(nullptr)
			, _finish(nullptr)
			, _endOfStorage(nullptr)
		{
			reserve(v.capacity());
			iterator it = begin();
			const_iterator vit = v.cbegin();
			while (vit != v.cend())
			{
				*it++ = *vit++;
			}
			_finish = it;
		}

		vector<T>& operator=(vector<T> v)
		{
			swap(v);
			return *this;
		}

		~vector()
		{
			if (_start)
			{
				delete[] _start;
				_start = _finish = _endOfStorage = nullptr;
			}
		}

		/
		// 迭代器相关
		iterator begin()
		{
			return _start;
		}

		iterator end()
		{
			return _finish;
		}

		const_iterator cbegin() const
		{
			return _start;
		}

		const_iterator cend() const
		{
			return _finish;
		}

		//
		// 容量相关
		size_t size() const 
		{ 
			return _finish - _start; 
		}

		size_t capacity() const 
		{ 
			return _endOfStorage - _start; 
		}

		bool empty() const 
		{ 
			return _start == _finish; 
		}

		void reserve(size_t n)
		{
			if (n > capacity())
			{
				size_t oldSize = size();
				// 1. 开辟新空间
				T* tmp = new T[n];

				// 2. 拷贝元素
		        // 这里直接使用memcpy会有问题吗?同学们思考下
		        //if (_start)
		        //	memcpy(tmp, _start, sizeof(T)*size);

				if (_start)
				{
					for (size_t i = 0; i < oldSize; ++i)
						tmp[i] = _start[i];

					// 3. 释放旧空间
					delete[] _start;
				}

				_start = tmp;
				_finish = _start + oldSize;
				_endOfStorage = _start + n;
			}
		}

		void resize(size_t n, const T& value = T())
		{
			// 1.如果n小于当前的size,则数据个数缩小到n
			if (n <= size())
			{
				_finish = _start + n;
				return;
			}

			// 2.空间不够则增容
			if (n > capacity())
				reserve(n);

			// 3.将size扩大到n
			iterator it = _finish;
			_finish = _start + n;
			while (it != _finish)
			{
				*it = value;
				++it;
			}
		}

		///
		// 元素访问
		T& operator[](size_t pos) 
		{ 
			assert(pos < size());
			return _start[pos]; 
		}

		const T& operator[](size_t pos)const 
		{ 
			assert(pos < size());
			return _start[pos]; 
		}

		T& front()
		{
			return *_start;
		}

		const T& front()const
		{
			return *_start;
		}

		T& back()
		{
			return *(_finish - 1);
		}

		const T& back()const
		{
			return *(_finish - 1);
		}
		/
		// vector的修改操作
		void push_back(const T& x) 
		{ 
			insert(end(), x); 
		}

		void pop_back() 
		{ 
			erase(end() - 1); 
		}

		void swap(vector<T>& v)
		{
			std::swap(_start, v._start);
			std::swap(_finish, v._finish);
			std::swap(_endOfStorage, v._endOfStorage);
		}

		iterator insert(iterator pos, const T& x)
		{
			assert(pos <= _finish);

			// 空间不够先进行增容
			if (_finish == _endOfStorage)
			{
				//size_t size = size();
				size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2;
				reserve(newCapacity);

				// 如果发生了增容,需要重置pos
				pos = _start + size();
			}

			iterator end = _finish - 1;
			while (end >= pos)
			{
				*(end + 1) = *end;
				--end;
			}

			*pos = x;
			++_finish;
			return pos;
		}

		// 返回删除数据的下一个数据
		// 方便解决:一边遍历一边删除的迭代器失效问题
		iterator erase(iterator pos)
		{
			// 挪动数据进行删除
			iterator begin = pos + 1;
			while (begin != _finish) {
				*(begin - 1) = *begin;
				++begin;
			}

			--_finish;
			return pos;
		}
	private:
		iterator _start;		// 指向数据块的开始
		iterator _finish;		// 指向有效数据的尾
		iterator _endOfStorage;  // 指向存储容量的尾
	};
}

/// /
/// 对模拟实现的vector进行严格测试
void TestBitVector1()
{
	bit::vector<int> v1;
	bit::vector<int> v2(10, 5);

	int array[] = { 1,2,3,4,5 };
	bit::vector<int> v3(array, array+sizeof(array)/sizeof(array[0]));

	bit::vector<int> v4(v3);

	for (size_t i = 0; i < v2.size(); ++i)
	{
		cout << v2[i] << " ";
	}
	cout << endl;

	auto it = v3.begin();
	while (it != v3.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	for (auto e : v4)
	{
		cout << e << " ";
	}
	cout << endl;
}

void TestBitVector2()
{
	bit::vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);
	v.push_back(5);
	cout << v.size() << endl;
	cout << v.capacity() << endl;
	cout << v.front() << endl;
	cout << v.back() << endl;
	cout << v[0] << endl;
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;

	v.pop_back();
	v.pop_back();
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;

	v.insert(v.begin(), 0);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;

	v.erase(v.begin() + 1);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;
}

2.2 使用memcpy拷贝问题

假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题?

int main()
{
bite::vector<bite::string> v;
v.push_back("1111");
v.push_back("2222");
v.push_back("3333");
return 0;
}

问题分析:

  1. memcpy是内存的二进制格式拷贝,将一段内存空间中内容原封不动的拷贝到另外一段内存空间中
  2. 如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃.

2.2 动态二维数组理解

// 以杨慧三角的前n行为例:假设n为5
void test2vector(size_t n)
{
// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>
bit::vector<bit::vector<int>> vv(n);
// 将二维数组每一行中的vecotr<int>中的元素全部设置为1
for (size_t i = 0; i < n; ++i)
vv[i].resize(i + 1, 1);
// 给杨慧三角出第一列和对角线的所有元素赋值
for (int i = 2; i < n; ++i)
{
for (int j = 1; j < i; ++j)
{
vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];
}
}
}

bit::vector<bit::vector> vv(n); 构造一个vv动态二维数组,vv中总共有n个元素,每个元素都是vector类型的,每行没有包含任何元素,如果n为5时如下所示:
在这里插入图片描述
vv中元素填充完成之后,如下图所示:
在这里插入图片描述
使用标准库中vector构建动态二维数组时与上图实际是一致的.

结尾:今天的分享到此结束,喜欢的朋友如果感觉有帮助可以点赞三连支持,咱们共同进步!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/608437.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

金三银四面试题(二十五):策略模式知多少?

什么是策略模式 策略模式&#xff08;Strategy Pattern&#xff09;是一种行为型设计模式&#xff0c;旨在定义一系列算法&#xff0c;将每个算法封装到一个独立的类中&#xff0c;使它们可以互换。策略模式让算法的变化独立于使用它们的客户端&#xff0c;使得客户端可以根据…

车载测试系列:入行车载测试分享

车载测试前景如何&#xff1f; 软件定义汽车时代的发展趋势&#xff0c;随着控制器自主开发力度的加强&#xff0c;作为V流程中必备环节&#xff0c;车载测试工程师岗位需求会越来越多&#xff1b;控制器集成化&#xff0c;功能集成程度越来越高&#xff0c;对于测试工程师的知…

3. 初探MPI——(非阻塞)点对点通信

系列文章目录 初探MPI——MPI简介初探MPI——&#xff08;阻塞&#xff09;点对点通信初探MPI——&#xff08;非阻塞&#xff09;点对点通信初探MPI——集体通信 文章目录 系列文章目录前言一、Non-blocking communications1.1 Block version1.2 Non-blocking version 二、准…

思维导图软件哪个好?盘点这5款好用的工具!

思维导图作为一种有效的思维工具&#xff0c;在日常生活和工作中扮演着越来越重要的角色。无论是学习、工作规划&#xff0c;还是项目管理&#xff0c;思维导图都能帮助我们更好地组织思路&#xff0c;提升工作效率。然而&#xff0c;市面上众多的思维导图软件让人眼花缭乱&…

软件系统工程建设全套资料(交付清单)

软件全套精华资料包清单部分文件列表&#xff1a; 工作安排任务书&#xff0c;可行性分析报告&#xff0c;立项申请审批表&#xff0c;产品需求规格说明书&#xff0c;需求调研计划&#xff0c;用户需求调查单&#xff0c;用户需求说明书&#xff0c;概要设计说明书&#xff0c…

C++类和对象(4)

目录 1.初始化列表 2.单参数里面的隐式类型转换 3.多参数的隐式类型转换 4.匿名对象 1.初始化列表 &#xff08;1&#xff09;首先看一下初始化列表具体是什么&#xff1f; 这个就是初始化列表的具体形式&#xff0c;对&#xff0c;你没有看错&#xff0c;这个初始化列表里…

python:画折线图

import pandas as pd import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties# 设置新宋体字体的路径 font_path D:/reportlab/simsun/simsun.ttf# 加载新宋体字体 prop FontProperties(fnamefont_path)""" # 读取 xlsx 文件 d…

【投资必看】充电桩加盟合作哪家好,充电桩厂家合作模式一般有哪些?

随着新能源汽车行业的蓬勃发展&#xff0c;充电桩作为关键的基础设施&#xff0c;其市场需求日益增长。对于有意进入这一行业的投资者来说&#xff0c;了解和选择适合的合作模式至关重要。充电桩厂家的合作模式一般有哪些&#xff0c;本文将从设备销售和投资运营两个维度进行讨…

容灾演练双月报|郑大一附院数据级容灾演练切换

了解更多灾备行业动态 守护数字化时代业务连续 目录 CONTENTS 01 灾备法规政策 02 热点安全事件 03 容灾演练典型案例 01 灾备法规政策 3月19日&#xff0c;工信部发布《工业和信息化部办公厅关于做好2024年信息通信业安全生产和网络运行安全工作的通知》。明确提出“…

官宣:vAsterNOS正式发布!开放网络操作系统免费试用!

近期&#xff0c;vAsterNOS&#xff08;设备模拟器&#xff09;正式发布&#xff0c;可以满足用户快速了解 AsterNOS、体验实际操作、搭建模拟网络的需求&#xff0c;可运行在GNS3、EVE-NG等网络虚拟软件中。 AsterNOS 网络操作系统是星融元为人工智能、机器学习、高性能计算、…

java培训班还值得去培训吗?

请大家关注我的公众号&#xff1a;老胡聊Java 1 应届生或者在校生&#xff0c;如果感觉有必要&#xff0c;可以去提升下技术&#xff0c;因为应届生或在校生找工作时&#xff0c;未必要提升真实项目经验&#xff0c;所以用应届生身份学到的spring boot等java技术背面试题&#…

《二十三》Qt 简单小项目---视频播放器

QT 使用QMediaPlayer实现的简易视频播放器 效果如下&#xff1a; 功能点 播放指定视频点击屏幕暂停/播放开始/暂停/重置视频拖拽到指定位置播放 类介绍 需要在配置文件中加入Multimedia, MultimediaWidgets这俩个库。 Multimedia&#xff1a;提供了一套用于处理音频、视频…

如何开启深色模式【攻略】

如何开启深色模式【攻略】 前言版权推荐如何开启深色模式介绍手机系统手机微信手机QQ手机快手手机抖音 电脑系统电脑微信电脑QQ电脑WPS电脑浏览器 最后 前言 2024-5-9 20:48:21 深色模式给人以一种高级感。 本文介绍一些常用软件深色模式的开启 以下内容源自《【攻略】》 仅…

基于Spring Boot的酒店管理系统设计与实现

基于Spring Boot的酒店管理系统设计与实现 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclipse/idea 系统部分展示 系统首页界面图&#xff0c;在系统首页可以查看首页…

【数据结构-二叉搜索树的增删查改】

&#x1f308;个人主页&#xff1a;努力学编程’ ⛅个人推荐&#xff1a;基于java提供的ArrayList实现的扑克牌游戏 |C贪吃蛇详解 ⚡学好数据结构&#xff0c;刷题刻不容缓&#xff1a;点击一起刷题 &#x1f319;心灵鸡汤&#xff1a;总有人要赢&#xff0c;为什么不能是我呢 …

python-类和对象

1、设计一个 Circle类来表示圆,这个类包含圆的半径以及求面积和周长的函数。再使用这个类创建半径为1~10的圆,并计算出相应的面积和周长。 &#xff08;1&#xff09;源代码&#xff1a; import math class Circle: def __init__(self, r): self.r r #面积 def area(self): r…

最佳实践 | 八爪鱼采集器如何用PartnerShare做全民分销?

在数字化时代&#xff0c;数据采集和分析已经成为企业运营和决策的重要一环。八爪鱼采集器作为一款领先的SaaS产品&#xff0c;凭借其强大的数据采集和处理能力&#xff0c;成为了众多企业和个人用户的心头好。为了进一步拓展市场份额&#xff0c;提升品牌影响力&#xff0c;八…

TCP通信并发:

上次的程序只能保持&#xff0c;单线程或者进程 多进程并发服务器 进程的特点&#xff08;有血缘关系&#xff09; 创建子进程&#xff1a;fork&#xff08;&#xff09;&#xff1b; 虚拟地址空间被复制 &#xff0c;从一份变成两份&#xff08;用户区和内核区&#xff09…

国内如何访问 OpenAI 的 api

这个问题甚至我的一些大厂的朋友也不太清楚&#xff0c;所以我觉得有必备写一篇文章来简单盘盘它&#xff0c;希望能帮助到有需要的人 众所周知&#xff0c;由于大陆与 OpenAI 双方互相封锁&#xff0c;大陆是无法直接访问 OpenAI api 的 不过由于 GPT 4 的统治地位&#xff0c…

下一代自动化,国外厂商如何通过生成性AI重塑RPA?

企业自动化的未来趋势是什么&#xff1f;科技巨头们普遍认为&#xff0c;由生成性AI驱动的AI Agent将成为下一个重大发展方向。尽管“AI Agent”这一术语尚无统一定义&#xff0c;但它通常指的是那些能够根据指令通过模拟人类互动&#xff0c;在软件和网络平台上执行复杂任务的…