多线程学习D10 收尾了应该

线程安全集合类概述

重点介绍java.util.concurrent.* 下的线程安全集合类,可以发现它们有规律,里面包含三类关键词:Blocking、CopyOnWrite、Concurrent

Blocking 大部分实现基于锁,并提供用来阻塞的方法
CopyOnWrite 之类容器修改开销相对较重
Concurrent 类型的容器
   内部很多操作使用 cas 优化,一般可以提供较高吞吐量
   弱一致性
        遍历时弱一致性,例如,当利用迭代器遍历时,如果容器发生修改,迭代器仍然可以继续进行  遍历,这时内容是旧的
        求大小弱一致性,size 操作未必是 100% 准确
        读取弱一致性

遍历时如果发生了修改,对于非安全容器来讲,使用 fail-fast 机制也就是让遍历立刻失败,抛出
ConcurrentModificationException,不再继续遍历

ConcurrentHashMap原理

1. JDK 7 HashMap 并发死链

这得用jdk7才有效果,我没有jdk7,就体会一下把

 public static void main(String[] args) {
// 测试 java 7 中哪些数字的 hash 结果相等
        System.out.println("长度为16时,桶下标为1的key");
        for (int i = 0; i < 64; i++) {
            if (hash(i) % 16 == 1) {
                System.out.println(i);
            }
        }
        System.out.println("长度为32时,桶下标为1的key");
        for (int i = 0; i < 64; i++) {
            if (hash(i) % 32 == 1) {
                System.out.println(i);
            }
        }
// 1, 35, 16, 50 当大小为16时,它们在一个桶内
        final HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
// 放 12 个元素
        map.put(2, null);
        map.put(3, null);
        map.put(4, null);
        map.put(5, null);
        map.put(6, null);
        map.put(7, null);
        map.put(8, null);
        map.put(9, null);
        map.put(10, null);
        map.put(16, null);
        map.put(35, null);
        map.put(1, null);
        System.out.println("扩容前大小[main]:"+map.size());
        new Thread() {
            @Override
            public void run() {
// 放第 13 个元素, 发生扩容
                map.put(50, null);
                System.out.println("扩容后大小[Thread-0]:"+map.size());
            }
        }.start();
        new Thread() {
            @Override
            public void run() {
// 放第 13 个元素, 发生扩容
                map.put(50, null);
                System.out.println("扩容后大小[Thread-1]:"+map.size());
            }
        }.start();
    }
    final static int hash(Object k) {
        int h = 0;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }
        h ^= k.hashCode();
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }
原始链表,格式:[下标] (key,next)
[1] (1,35)->(35,16)->(16,null)
线程 a 执行到 1 处 ,此时局部变量 e 为 (1,35),而局部变量 next 为 (35,16) 线程 a 挂起
线程 b 开始执行
第一次循环
[1] (1,null)
第二次循环
[1] (35,1)->(1,null)
第三次循环
[1] (35,1)->(1,null)
[17] (16,null)
切换回线程 a,此时局部变量 e 和 next 被恢复,引用没变但内容变了:e 的内容被改为 (1,null),而 next 的内
容被改为 (35,1) 并链向 (1,null)
第一次循环
[1] (1,null)
第二次循环,注意这时 e 是 (35,1) 并链向 (1,null) 所以 next 又是 (1,null)
[1] (35,1)->(1,null)
第三次循环,e 是 (1,null),而 next 是 null,但 e 被放入链表头,这样 e.next 变成了 35 (2 处)
[1] (1,35)->(35,1)->(1,35)
已经是死链了
北

究其原因,是因为在多线程环境下使用了非线程安全的 map 集合
JDK 8 虽然将扩容算法做了调整,不再将元素加入链表头(而是保持与扩容前一样的顺序),但仍不意味着能够在多线程环境下能够安全扩容,还会出现其它问题(如扩容丢数据)

2. JDK 8 ConcurrentHashMap

重要属性和内部类

// 默认为 0
// 当初始化时, 为 -1
// 当扩容时, 为 -(1 + 扩容线程数)
// 当初始化或扩容完成后,为 下一次的扩容的阈值大小
private transient volatile int sizeCtl;
// 整个 ConcurrentHashMap 就是一个 Node[]
static class Node<K,V> implements Map.Entry<K,V> {}
// hash 表
transient volatile Node<K,V>[] table;
// 扩容时的 新 hash 表
private transient volatile Node<K,V>[] nextTable;
// 扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点
static final class ForwardingNode<K,V> extends Node<K,V> {}
// 用在 compute 以及 computeIfAbsent 时, 用来占位, 计算完成后替换为普通 Node
static final class ReservationNode<K,V> extends Node<K,V> {}
// 作为 treebin 的头节点, 存储 root 和 first
static final class TreeBin<K,V> extends Node<K,V> {}
// 作为 treebin 的节点, 存储 parent, left, right
static final class TreeNode<K,V> extends Node<K,V> {}

重要方法

// 获取 Node[] 中第 i 个 Node
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i)
// cas 修改 Node[] 中第 i 个 Node 的值, c 为旧值, v 为新值
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)
// 直接修改 Node[] 中第 i 个 Node 的值, v 为新值
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)
北

构造器分析
可以看到实现了懒惰初始化,在构造方法中仅仅计算了 table 的大小,以后在第一次使用时才会真正创建

public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
// tableSizeFor 仍然是保证计算的大小是 2^n, 即 16,32,64 ...
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}

get 流程(全程没有加锁)

public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// spread 方法能确保返回结果是正数
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 如果头结点已经是要查找的 key
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// hash 为负数表示该 bin 在扩容中或是 treebin, 这时调用 find 方法来查找
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 正常遍历链表, 用 equals 比较
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}

put 流程(真是令人头秃)

   public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
// 其中 spread 方法会综合高位低位, 具有更好的 hash 性
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
// f 是链表头节点
// fh 是链表头结点的 hash
// i 是链表在 table 中的下标
Node<K,V> f; int n, i, fh;
// 要创建 table
if (tab == null || (n = tab.length) == 0)
// 初始化 table 使用了 cas, 无需 synchronized 创建成功, 进入下一轮循环
tab = initTable();
// 要创建链表头节点
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 添加链表头使用了 cas, 无需 synchronized
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break;
}
// 帮忙扩容
else if ((fh = f.hash) == MOVED)
// 帮忙之后, 进入下一轮循环
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 锁住链表头节点
synchronized (f) {
// 再次确认链表头节点没有被移动
if (tabAt(tab, i) == f) {
// 链表
if (fh >= 0) {
binCount = 1;
// 遍历链表
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 找到相同的 key
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
// 更新
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
// 已经是最后的节点了, 新增 Node, 追加至链表尾
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
// putTreeVal 会看 key 是否已经在树中, 是, 则返回对应的 TreeNode
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
// 释放链表头节点的锁
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
// 如果链表长度 >= 树化阈值(8), 进行链表转为红黑树
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// 增加 size 计数
addCount(1L, binCount);
return null;
}
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield();
// 尝试将 sizeCtl 设置为 -1(表示初始化 table)
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 获得锁, 创建 table, 这时其它线程会在 while() 循环中 yield 直至 table 创建
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
// check 是之前 binCount 的个数
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
if (
// 已经有了 counterCells, 向 cell 累加
(as = counterCells) != null ||
// 还没有, 向 baseCount 累加
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)
) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (
// 还没有 counterCells
as == null || (m = as.length - 1) < 0 ||
// 还没有 cell
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
// cell cas 增加计数失败
!(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
) {
// 创建累加单元数组和cell, 累加重试
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
// 获取元素个数
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// newtable 已经创建了,帮忙扩容
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 需要扩容,这时 newtable 未创建
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}

size 计算流程
size 计算实际发生在 put,remove 改变集合元素的操作之中
      没有竞争发生,向 baseCount 累加计数
      有竞争发生,新建 counterCells,向其中的一个 cell 累加计数
          counterCells 初始有两个 cell
          如果计数竞争比较激烈,会创建新的 cell 来累加计数

public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
// 将 baseCount 计数与所有 cell 计数累加
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}

Java 8 数组(Node) +( 链表 Node | 红黑树 TreeNode ) 以下数组简称(table),链表简称(bin)
初始化,使用 cas 来保证并发安全,懒惰初始化 table
树化,当 table.length < 64 时,先尝试扩容,超过 64 时,并且 bin.length > 8 时,会将链表树化,树化过程会用 synchronized 锁住链表头
put,如果该 bin 尚未创建,只需要使用 cas 创建 bin;如果已经有了,锁住链表头进行后续 put 操作,元素添加至 bin 的尾部
get,无锁操作仅需要保证可见性,扩容过程中 get 操作拿到的是 ForwardingNode 它会让 get 操作在新table 进行搜索
扩容,扩容时以 bin 为单位进行,需要对 bin 进行 synchronized,但这时妙的是其它竞争线程也不是无事可做,它们会帮助把其它 bin 进行扩容,扩容时平均只有 1/6 的节点会把复制到新 table 中
size,元素个数保存在 baseCount 中,并发时的个数变动保存在 CounterCell[] 当中。最后统计数量时累加即可

LinkedBlockingQueue 原理

public class LinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
static class Node<E> {
E item;
/**
* 下列三种情况之一
* - 真正的后继节点
* - 自己, 发生在出队时
* - null, 表示是没有后继节点, 是最后了
*/
Node<E> next;
Node(E x) { item = x; }
}
}

初始化链表 last = head = new Node<E>(null); Dummy 节点用来占位,item 为 null

当一个节点入队 last = last.next = node;

 再来一个节点入队 last = last.next = node;

出队

Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;

h = head

first = h.next

h.next = h

head = first

E x = first.item;
first.item = null;
return x;

加锁分析

==高明之处==在于用了两把锁和 dummy 节点
    用一把锁,同一时刻,最多只允许有一个线程(生产者或消费者,二选一)执行
    用两把锁,同一时刻,可以允许两个线程同时(一个生产者与一个消费者)执行
        消费者与消费者线程仍然串行
        生产者与生产者线程仍然串行

线程安全分析
当节点总数大于 2 时(包括 dummy 节点),putLock 保证的是 last 节点的线程安全,takeLock 保证的是head 节点的线程安全。两把锁保证了入队和出队没有竞争
当节点总数等于 2 时(即一个 dummy 节点,一个正常节点)这时候,仍然是两把锁锁两个对象,不会竞争
当节点总数等于 1 时(就一个 dummy 节点)这时 take 线程会被 notEmpty 条件阻塞,有竞争,会阻塞

put 操作

public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
// count 用来维护元素计数
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
// 满了等待
while (count.get() == capacity) {
// 倒过来读就好: 等待 notFull
notFull.await();
}
// 有空位, 入队且计数加一
enqueue(node);
c = count.getAndIncrement();
// 除了自己 put 以外, 队列还有空位, 由自己叫醒其他 put 线程
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
// 如果队列中有一个元素, 叫醒 take 线程
if (c == 0)
// 这里调用的是 notEmpty.signal() 而不是 notEmpty.signalAll() 是为了减少竞争
signalNotEmpty();
}

take 操作

public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
// 如果队列中只有一个空位时, 叫醒 put 线程
// 如果有多个线程进行出队, 第一个线程满足 c == capacity, 但后续线程 c < capacity
if (c == capacity)
// 这里调用的是 notFull.signal() 而不是 notFull.signalAll() 是为了减少竞争
signalNotFull()
return x;
}

LinkedBlockingQueue 与 ArrayBlockingQueue 的性能比较

Linked 支持有界,Array 强制有界
Linked 实现是链表,Array 实现是数组
Linked 是懒惰的,而 Array 需要提前初始化 Node 数组
Linked 每次入队会生成新 Node,而 Array 的 Node 是提前创建好的
Linked 两把锁,Array 一把锁

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/607685.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

iOS 17 / iPad OS 17屏蔽更新

iOS 17 / iPad OS 17屏蔽更新 1&#xff0c;进入屏蔽iOS更新的描述文件下载链接 下载链接 wx 搜索 Geek 前端发送屏蔽更新进行获取 2&#xff0c;复制这段链接&#xff0c;在Safari浏览器中打开&#xff0c;注意打开后别点击下载&#xff01;要先改时间&#xff01; 3&#…

69、oak和华为atlas 200dk A2进行编解码测试

基本思想:将oak深度相机与atlas 200dk A2进行结合,测试其dvpp的编解码能力 cmakelist.txt cmake_minimum_required(VERSION 3.16) project(untitled10) set(CMAKE_CXX_FLAGS "-std=c++11") set(CMAKE_CXX_STANDARD 11) add_definitions(-DENABLE_DVPP_INTERFACE)i…

数据的输入和输出

早期的总线系统 为了解决通信的问题、主板上铺设了一条公共线路、各个设备都连接到这条线路上、不管谁要和谁通信、都能使用它来传输、这条线路就是总线。 总线上有CPU、内存、鼠标、键盘、硬盘、网卡、声卡、显卡等… 说是一条总线、实际上是包含了传输数据的数据总线、传输…

保研面试408复习 4——操作系统、计网

文章目录 1、操作系统一、文件系统中文件是如何组织的&#xff1f;二、文件的整体概述三、UNIX外存空闲空间管理 2、计算机网络一、CSMA/CD 协议&#xff08;数据链路层协议&#xff09;二、以太网MAC帧MTU 标记文字记忆&#xff0c;加粗文字注意&#xff0c;普通文字理解。 1、…

「C++ 内存管理篇 00」指针

目录 一、变量&#xff0c;变量名和指针 1. 什么是变量&#xff1f; 2. 变量名和指针 3. 使用指针获取数据 二、指针变量和数组变量 三、编译器对指针的等级有着严格的检查 四、指针的加减 1. 存放指针的变量的加减 2. 存放指针的变量的自增自减 3. 两个指针相减 一、变量&…

融知财经:期货交易的规则和操作方法

期货交易是指在未来的某一特定时期&#xff0c;买卖双方通过签订合约的方式&#xff0c;约定以某种价格买卖一定数量的某种商品或资产的行为。期货交易的规则和操作方法如下&#xff1a; 期货交易的规则和操作方法 1、双向交易&#xff1a; 期货市场允许投资者进行多头&#xf…

数据结构_栈和队列(Stack Queue)

✨✨所属专栏&#xff1a;数据结构✨✨ ✨✨作者主页&#xff1a;嶔某✨✨ 栈&#xff1a; 代码&#xff1a;function/数据结构_栈/stack.c 钦某/c-language-learning - 码云 - 开源中国 (gitee.com)https://gitee.com/wang-qin928/c-language-learning/blob/master/function/…

实战教程:个性化生鲜超市小程序制作与运营全解析

生鲜电商行业一直以来都备受关注&#xff0c;而如今&#xff0c;小程序商城成为了这个行业的新潮流。乔拓云平台提供了一个便捷的平台&#xff0c;让我们可以轻松地进入商城后台管理页面。 浏览器搜索【乔拓云】并登陆平台后&#xff0c;我们可以点击【小程序商城】模块&#x…

Redis学习汇总

目录 1.Linux环境下安装redis 2.redis的数据结构及命令 3.redis.conf配置文件常用配置 3.redis的事务操作 4.redis实现乐观锁 5.通过jedis操作redis 6.Springboot集成redis 7.自定义一个RedisTemplate 8.持久化策略 RDB和AOF 9.redis集群环境搭建 10.哨兵模式 11.缓…

Langchain实战

感谢阅读 LangChain介绍百度文心API申请申请百度智能云创建应用 LLMChain demo以及伪幻觉问题多轮对话的实现Sequential ChainsSimpleSequentialChainSequentialChainRouter Chain Documents ChainStuffDocumentsChainRefineDocumentsChainMapReduceDocumentsChainMapRerankDoc…

第09章 局域网技术(拓扑结构设计+FDDI工作机制)

9.1 本章目标 了解IEEE 802局域网标准掌握局域网拓扑结构了解10Base以太网了解快速以太网熟悉交换式以太网了解千兆位以太网了解其它种类的局域网局域网中的常用技术 9.2 局域网概述 罗伯特梅特卡夫个人简介 罗伯特梅特卡夫&#xff08;Robert Metcalfe&#xff0c;1…

第五节课《LMDeploy 量化部署 LLM 实践》

LMDeploy 量化部署 LLM-VLM 实践_哔哩哔哩_bilibili PDF链接&#xff1a;https://pan.baidu.com/s/1JFtvBWgEGFWJq8pHafvIUg?pwd6666 提取码&#xff1a;6666 https://github.com/InternLM/Tutorial/blob/camp2/lmdeploy/README.md 一、大模型部署背景 RAG范式开发大模型…

neo4j-5.11.0安装APOC插件or配置允许使用过程的权限

在已经安装好neo4j和jdk的情况下安装apoc组件&#xff0c;之前使用neo4j-community-4.4.30&#xff0c;可以找到配置apoc-4.4.0.22-all.jar&#xff0c;但是高版本neo4j对应没有apoc-X.X.X-all.jar。解决如下所示&#xff1a; 1.安装好JDK与neo4j 已经安装对应版本的JDK 17.0…

ABAP 第二代增强-采购申请子屏幕增强

文章目录 第二代增强-采购申请子屏幕增强需求实现过程创建项目运行效果客户屏幕的PBO全局变量获取数据更新数据运行效果查询底表修改数据 第二代增强-采购申请子屏幕增强 需求 实现过程 创建项目 运行效果 客户屏幕的PBO 全局变量 *&------------------------------------…

点击短信链接唤起Android App实战

一.概述 在很多业务场景中,需要点击短信链接跳转到App的指定页面。在Android系统中,想要实现这个功能,可以通过DeepLink或AppLink实现。二.方案 2.1 DeepLink 2.1.1 方案效果 DeepLink是Android系统最基础、最普遍、最广泛的外部唤起App的方式,不受系统版本限制。当用户…

《21天学通C++》(第二十章)STL映射类(map和multimap)

为什么需要map和multimap&#xff1a; 1.查找高效&#xff1a; 映射类允许通过键快速查找对应的值&#xff0c;这对于需要频繁查找特定元素的场景非常适合。 2.自动排序&#xff1a; 会自动根据键的顺序对元素进行排序 3.多级映射&#xff1a; 映射类可以嵌套使用&#xff0c;创…

typescript类型基础

typescript类型基础 枚举类型 enum Season {Spring,Summer,Fall,Winter }数值型枚举 enum Direction {Up,Down,Left,Right } const direction:Direction Direction.up每个数值型枚举成员都表示一个具体的数字&#xff0c;如果在定义一个枚举的时候没有设置枚举成员的值&…

5款智能写作工具,为大家一键生成原创文案

好的文案是能吸引眼球、传递信息&#xff0c;但对于许多人来说&#xff0c;写出好文案是一项耗时耗力的任务。而随着一些智能写作工具的出现&#xff0c;它为我们带来了很大的便利&#xff0c;无论是写作文案还是写作其它的内容&#xff0c;智能写作工具都能轻松帮助我们完成。…

感谢有你 | FISCO BCOS 2024年度第一季度贡献者榜单

挥别春天&#xff0c;FISCO BCOS开源社区迎来了2024年第一季度的共建成果。FISCO BCOS秉承对区块链技术的信仰&#xff0c;汇聚超过5000家企业机构、10万余名个人成员共建共治共享&#xff0c;持续打造更加活跃更加繁荣的开源联盟链生态圈。 开启夏日&#xff0c;我们见证了社…

从源头把控风险:集团多主体合规管理实战技巧分享

官.网地址&#xff1a;合合TextIn - 合合信息旗下OCR云服务产品 集团合规管理中&#xff0c;为了规避内外部利益冲突&#xff0c;需要对员工、供应商、经销商、客户、黑名单企业等多主体及其关联主体之间&#xff0c;进行多维度、多层级的关系挖掘与排查&#xff0c;避免利益…