深入学习 Redis - 谈谈你对 Redis 的 RDB、AOF、混合持久化的了解吧?

目录

一、Redis 是怎么存储数据的?

二、Redis 具体是按照什么样的策略来实现持久化的?

2.1、RDB(Redis Database)

2.1.1、触发机制

2.1.2、bgsave 命令处理流程

2.1.3、RDB 文件的处理

2.1.4、演示效果

1)手动执行 bgsave

2)自动执行 bgsave 

3)观察 bgsave 执行文件替换效果

4)实操问题:如果把 rdb 文件故意改坏了,会咋样?

2.1.5、RDB 的优缺点

2.2、AOF(append only file)

2.2.1、开启 aof 功能

2.2.2、刷新缓冲区策略

2.2.3、重写机制(rewrite)

2.2.4、AOF 重写流程

2.3、混合持久化


一、Redis 是怎么存储数据的?


Redis 为了考虑速度和数据的持久化,采取内存 + 硬盘的方式存储存储数据,并且这两份数据理论上是相同的(实际上可能存在小的差异,具体看如何进行持久化)。

具体的,如下:

  1. 当需要插入一个新的数据的时候,就需要吧这个数据,同时写入到内存和硬盘(这里有很多种存储策略);
  2. 当查询某一个数据的时候,直接从内存读取;
  3. 硬盘中的数据知识在 redis 重启的时候,用来恢复内存中的数据.

这样做的代价就是消耗了更多的内存空间(同一份数据,存储两份),但是毕竟硬盘比较便宜,这样的开销并不会带来太多的成本.

二、Redis 具体是按照什么样的策略来实现持久化的?


Redis 持久化是通过两种策略实现的,一种是 定期备份——RDB(Redis DataBase),另一种是 实时备份——AOF(Append Only File).

2.1、RDB(Redis Database)

RDB 会定期把 Redis 内存中的所有数据,以二进制的形式都写入硬盘,生成一个“快照”.(生成一个 rdb 文件,放在 redis 的工作目录中)

“快照”:这就像是某个案发现场,警察来了,拉上警戒线,然后警察们就开始忙碌的拍照,记录现场,后续就可以根据这些记录的照片来还原出现场当时发生了什么~

Redis 给内存中当前存储的这些数据,赶紧拍照,生成一个文件,存储在硬盘中~

2.1.1、触发机制

“定期”具体来说,又有两种方式:

1.手动触发

        程序员通过 redis 客户端,执行特定的命令,来触发快照的生成:

        save:执行 save 的时候,redis 就会全力以赴的进行“快照生成”操作,此时就会阻塞 redis                    的其他客户端命令,导致类似于 keys * 的后果,也因此一般不建议使用.

        dgsave:dg(background 后面),也就是后台处理的意思,不会影响到 Redis 服务器处理其他客户端的请求和命令.

Ps:这后台处理是怎么做到的?难道是多进程么?并非如此,实际上这是一个 并发编程 的场景,此处 redis 使用的是 “多进程” 的方式来完成并发编程。实现 bgsave.

2.自动触发

自动触发是需要在 Redis 的配置文件中设置的,让 Redis 每隔多长时间 / 每产生多少次修改就触发.

此处的数值都是可以进行修改的,虽然可以自由配置,但是修改这些数据要有一个基本原则:申城一次 rdb 快照,成本是比较高的,不能让这个操作执行太频繁.(因此上述配置中,save 60 10000 就表示两次生成 rdb 之间的间隔最少必须要 60s 内进行了 10000 次修改).

2.1.2、bgsave 命令处理流程

bgsave 操作流程是通过 fork 创建子进程,让子进程来完成持久化操作~  持久化就会把要生成的快照数据先保存到一个临时文件中,当这个快照生成完后,再删除之前的 rdb 文件,把新生成临时 rdb 文件名字改成刚才的删除的 rdb 文件的名字,然后使用新的文件替换旧的文件(rdb 对于 fork 之后的新数据,就置之不理了,这里要对比着 aof 来看).

Ps:如果使用 save 命令,是不会触发 子进程 & 文件替换 逻辑,他会直接再当前进程中,往刚才同一个文件中写入数据.

2.1.3、RDB 文件的处理

通过 rdb 机制会在 redis 工作目录下,把内存中的数据,以压缩的形式(需要消耗一定的 cpu 资源,但是能节省存储空间),保存到一个二进制文件中,后续 redis 服务器重启,就会尝试去加载这个 rdb 文件,如果发现格式错误,就会加载失败(这个文件咱不去动他,也有可能会因为网络传输文件,遭到破坏)。

Ps:redis 也因此提供了 rdb 文件的检查工具——redis-check-rdb

2.1.4、演示效果

1)手动执行 bgsave

这里我们打开 redis 客户端,插入新的 key,手动执行 bgsave.

这里数据比较少,bgsave 瞬间就执行完了,立即查看 dump.rdb 文件就有结果,以后数据量多了,执行 bgsave 就要消耗一定的时间,立即查看不一定就是生成完毕.

接着就可以在 dump.rdb 快照中查看二进制数据

之后,使用 service redis-server restart 命令(一定要有符号链接)重启 redis 服务器,就可以看到 redis 服务器在重启的时候加载了rdb 文件的内容,恢复了之前的状态.



2)自动执行 bgsave 

如果通过正常流程重新启动或者关闭 redis 服务器,此时 redis 服务器就会在退出的时候,自动触发 rdb 操作!但是如果异常重启(kill -9 或者 服务器断点),此时 redis 服务器来不及生成 rdb,造成数据丢失.

Ps:redis 生成快照也可以有多种方式

1)到达配置文件中 save 执行条件

2)通过 shutdown 命令(redis 里的一个命令)关闭 redis 服务器,也会触发.

3)redis 进行主从赋值的时候,主节点也会自动生成 rdb 快照,然后把 rdb 快照文件内容传输给从节点(后面细说).

在配置文件中的 save 修改以后,一定要重启服务器,才能生效!

如果想要立即生效,也可以通过命令的方式进行修改~

3)观察 bgsave 执行文件替换效果

bgsave 创建子进程完成持久化操作会把数据写到新文件中,然后替换掉旧文件,这个过程是可以观察到的——使用 linux 的 stat 命令,查看文件 inode 编号.

执行 bgsave 后:

Linux 文件系统:

文件系统经典的组织方式,主要是把整个文件系统分成了三个大的部分

1.超级块:存放一些管理信息.

2.inode 区:存放 inode 结点,每个文件都会分配一个 inode 数据结构,包含了文件的各种元数据.

3.block 区:存放文件的数据内容.

4)实操问题:如果把 rdb 文件故意改坏了,会咋样?

ms:有实操过么?遇到什么问题吗?

Ps:手动把 rdb 文件内容改坏,前提是一定要通过 kill 进程的方式,然后启动 redis 服务器,如果通过 service redis-server restart 重启,就会在 redis 服务器退出的时候,重新生成 rdb 快照,就把刚刚改坏的文件替换掉了~

当我们把 rdb 文件内容改坏了,有可能服务器并没有受到什么影响,能正常启动,还能获取到一些 key,但是这里具体 redis 会咋样,取决于 rdb 文件坏的地方在哪(rdb 文件是二进制的,因此损坏后,交给 redis 去使用结果是不可预期的,可能能启动,但数据有问题,也有可能 redis 服务器直接启动失败)~

如果是文件末尾改坏了,对前面的内容没有啥影响,但如果是中间位置,可就不一定了,可能服务器就无法正常启动了~

当然 redis 也提供了 rdb 文件的检查工具,可以通过检查工具检查 rdb 文件格式是否符合要求,运行的时候,加入 rdb 文件作为命令行参数,此时就是以检查工具的方式来运行,不会真的启动 redis.

2.1.5、RDB 的优缺点

  1. RDB 是⼀个紧凑压缩的⼆进制⽂件,代表 Redis 在某个时间点上的数据快照。⾮常适⽤于备份,全量复制等场景。⽐如每 6 ⼩时执⾏ bgsave 备份,并把RDB⽂件复制到远程机器或者⽂件系统中
  2. Redis 加载 RDB 恢复数据远远快于AOF 的⽅式。
  3. RDB ⽅式数据没办法做到实时持久化 / 秒级持久化。因为 bgsave 每次运⾏都要执⾏ fork 创建⼦进程,属于重量级操作,频繁执⾏成本过⾼。
  4. RDB ⽂件使⽤特定⼆进制格式保存,Redis 版本演进过程中有多个 RDB 版本,兼容性可能有⻛险。

RDB 最大的问题,就是不能实时的持久化保存数据,在两次生成快照之间,实时的数据可能会随着异常重启而丢失.

2.2、AOF(append only file)

AOF(Append Only File)持久化:以文本文件的方式记录每次 redis 操作的命令,通过一些特殊的符号作为分隔符,来最命令做区分(具体规则,不用研究),重启时再重新执⾏ AOF  ⽂件中的命令达到恢复数据的目的.

2.2.1、开启 aof 功能

aof默认是关闭状态的,通过修改配置文件,来开启 aof 功能~

Ps:开启 aof 的时候,rdb 就不生效了,启动时不再读取 rdb 内容.

2.2.2、刷新缓冲区策略

引入 AOF 后,又要写内存又要写硬盘,还能和之前一样快了吗?

实际上,是没有影响的!!!原因如下

1.AOF 机制并非是直接让工作线程把数据写入硬盘,而是先写入一个内存中的缓冲区,积累到一定数量的时候,再统一写入硬盘。

Ps:这里的缓冲区大大降低了写硬盘的次数~  就好比我有 100 个请求,本来是分 100 次 一个一个写入,而现在只需要一次就可以把 100 个请求写入硬盘.

2. AOF 每次是把新的操作命令顺序写入原有文件的末尾,输入顺序写入,这样的方式相比于随机访问的速度要快很多的.

值得注意的是,写入缓冲区里,本质还是再内存中,如果这个时候主机断电,进程挂了,缓冲区的数据就丢失了~ 这里类似于 mysql 事务的隔离级别,要有一定的取舍~

redis 给出了一些选项,让我们可以根据实际情况来决定怎么取舍——缓冲区刷新策略:

刷新频率越高,数据的可靠性就越高,但是性能影响就越大。

刷新频率越低,数据的可靠性就越低,但是性能影响就越小。

1. always 每操作一次就保存一次:频率是最高的,数据可靠性最高,性能最低.

2. everysec 每秒保存一次:频率低一些,数据可靠性降低,性能会提高.

3. no 跟随系统的同步策略:频率最低,数据可靠性最低,性能是最高的.

2.2.3、重写机制(rewrite)

AOF 文件持续增长,体积越来越大,影响到 redis 下次启动的启动时间,这怎么办呢?

实际上, aof 中的文件,有一些内容是冗余的,比如如下操作

因此 redis 就存在一个机制,能针对 aof 文件进行 整理 操作,剔除其中的冗余操作,合并一些操作,达到给 aof 文件瘦身的效果.

他就是——重写机制,这个机制就类似于大学学分制度:

这次你挂科了,学分扣一些~

这次你参加公益活动了,学分加一些~

....

随着时间推移,教务系统上会记录很多东西,不方便了,就对上述内容进行一个统计,算出一个总分,再继续记录.

2.2.4、AOF 重写流程

2、4)发生重写时,会通过 fork 创建子进程,创建的一瞬间,子进程就继承了当前父进程的内存状态,子进程只需要把内存中当前的数据(内存这里的数据已经是整理之后的模样了),获取出来,以文本格式写入到一个新的 aof 文件中.

1、2、3.1)此时父进程仍然负责接收新的请求,把这些请求产生的 aof 数据先写入到缓冲区,再刷新到旧的 aof 文件里。

2、3.2)上述操作之后,子进程里的内存数据是父进程 fork 之前的状态,fork 之后新来的请求,对内存的修改,子进程是不知道的,因此父进程这里又准备了一个 aof_rewrite_buf 缓冲区,专门存放 fork 之后接收到的数据(这里 rdb 对于 fork 之后的新数据,就置之不理了).

5.1、5.2)子进程这边,把 aof 数据写完之后,会通过 信号 通知以下父进程,父进程再把 aof_rewrite_buf 缓冲区中的内容也写入到新的 AOF 文件中.

5.3)最后就可以使用新的 aof 替换旧的 aof 文件了~

有几个特殊情况,如下:

1.如果执行 bgrewriteaof 的时候,当前 redis 已经正在进行 aof 重写了,会怎么样?

        此时,不会再执行 aof 重写,直接返回.

2.如果执行 bgrewriteaof 的时候,发现当前 redis 在生成 rdb 文件的快照,会怎么样呢?

        此时,aof 重写操作就会等待,等到 rdb 快照完毕之后,在进行 aof 重写.

Ps:现在的系统中,系统的资源一般都是比较充裕的, aof 的开销也不算事,因此一般来说, aof 的使用场景要多一些~

想到一个问题:子进程写完新的 aof 文件,最后要替代掉父进程继续在写的这个旧 aof 文件,那这个即将消失的 aof 文件还有什么意义?

这是一个好问题,我们可以去考虑一些极端的情况,假设在重写的过程中,重写了一半,服务器挂了,子进程内存的数据就会丢失,新的 aof 文件内容还不完整,所以如果父进程不坚持写旧的 aof 文件,重启旧没法保证数据的完整性了.

2.3、混合持久化

aof 按照文本的方式写入文件,但是文本写入成本是比较高的,redis 就引入了 “混合持久化” 的方式,结合了 rdb 和 aof 的特点~

在开启混合持久化的情况下, aof 重写时会把 redis 的持久化数据,以 RDB 的格式写入到新的 AOF 文件的开头,之后的数据再以 AOF 的格式化追加的文件的末尾,这样做,既可以避免因 aof 文件较大影响 redis 启动速度,又能防止 rdb 导致的一段时间内的数据丢失.

在配置文件中,上图中的这个选项为 yes 表示开启混合持久化(修改配置项后,记得重启服务器).

Ps:当 redis 同时存在 aof 文件和 rdb 快照的时候,以 aof 为主,rdb 就直接被忽略了~

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/60715.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023华数杯数学建模A题思路 - 隔热材料的结构优化控制研究

# 1 赛题 A 题 隔热材料的结构优化控制研究 新型隔热材料 A 具有优良的隔热特性,在航天、军工、石化、建筑、交通等 高科技领域中有着广泛的应用。 目前,由单根隔热材料 A 纤维编织成的织物,其热导率可以直接测出;但是 单根隔热…

Multimodal Learning with Transformer: A Survey

Transformer多模态学习 Abstract1 INTRODUCTION2 BACKGROUND2.1 Multimodal Learning (MML)2.2 Transformers: a Brief History and Milestones2.3 Multimodal Big Data 3 TRANSFORMERS: A GEOMETRICALLY TOPOLOGICAL PERSPECTIVE3.1 Vanilla Transformer3.1.1 Input Tokenizat…

查看gz文件 linux zcat file.gz mtx.gz

可以使用以下命令来查看 gz 压缩文件的内容: zcat file.gz 1 该命令会将 file.gz 文件解压并输出到标准输出,可以通过管道符将其与 grep 命令结合使用来查找需要的关键词,例如: zcat file.gz | grep keyword 1 该命令会将 file.gz…

GD32F103的EXTI中断和EXTI事件

GD32F103的EXTI可以产生中断,也产生事件信号。 GD32F03的EXTI触发源: 1、I/O管脚的16根线; 2、内部模块的4根线(包括LVD、RTC闹钟、USB唤醒、以太网唤醒)。 通过配置GPIO模块的AFIO_EXTISSx寄存器,所有的GPIO管脚都可以被选作EXTI的触发源…

windows开机运行jar

windows开机自启动jar包: 一、保存bat批处理文件 echo off %1 mshta vbscript:CreateObject("WScript.Shell").Run("%~s0 ::",0,FALSE)(window.close)&&exit java -jar E:\projects\ruoyi-admin.jar > E:\server.log 2>&1 &…

VX-API-Gateway开源网关技术的使用记录

VX-API-Gateway开源网关技术的使用记录 官网地址 https://mirren.gitee.io/vx-api-gateway-doc/ VX-API-Gateway(以下称为VX-API)是基于Vert.x (java)开发的 API网关, 是一个分布式、全异步、高性能、可扩展、轻量级的可视化配置的API网关服务官网下载程序zip包 访问 https:/…

【机器学习】 贝叶斯理论的变分推理

许志永 一、说明 贝叶斯原理,站在概率角度上似乎容易解释,但站在函数立场上就不那么容易了;然而,在高端数学模型中,必须要在函数和集合立场上有一套完整的概念,其迭代和运算才能有坚定的理论基础。 二、贝叶…

刷题笔记 day7

力扣 209 长度最小的子数组 解法:滑动指针(对同向双指针区间内的数据处理) 1)先初始化 两个指针 left ,right。 2)右移指针right的同时使用sum记录指针right处的值,并判断sum的值是否满足要求&…

【C#学习笔记】装箱和拆箱

文章目录 装箱和拆箱性能消耗装箱拆箱 比较var&#xff0c;object&#xff0c;dynamic&#xff0c;\<T\>varobject\<T\> 泛型dynamic 装箱和拆箱 在讲引用类型object的时候&#xff0c;我们说它是万能的&#xff0c;却没说它万能在哪里。 除了object为每一种变量…

【TiDB理论知识08】HATP概述

1 HTAP技术 OLTP 在线事务 支付 转账 高并发 每次操作的数据量少 &#xff0c;行存 OLAP 报表分析 每次操作大量数据 列存储 2 传统解决方案 数据抽取到数仓或者数据湖 ETL有延迟 &#xff0c;一般会有T1 T2 数据多副本 3 HTAP的要求 4 TIDB的HTAP架构 TiFlash特点&…

【Linux操作系统】相关问题和知识点总结~

【Linux操作系统】相关问题和知识点总结~&#x1f60e; 前言&#x1f64c;在Linux中&#xff0c;查看CPU使用效率top命令mpstat指令sar指令vmstat指令 如何查看Linux的内核版本grep指令&#xff08;用于在文件内容中&#xff0c;查找满足条件的内容&#xff09;如何批量删除当前…

Typescript+vite+sass手把手实现五子棋游戏(放置类)

Typescriptvitesass手把手实现五子棋游戏&#xff08;放置类&#xff09; 下面有图片和gif可能没加载出来 上面有图片和gif可能没加载出来 导言 最近练习Typescript&#xff0c;觉得差不多了&#xff0c;就用这个项目练练手&#xff0c;使用Typescript纯面向对象编程。 开源…

6.s081/6.1810(Fall 2022)Lab3: page tables

文章目录 前言其他篇章参考链接0. 前置环境1. Speed up system calls (easy)1.1 简单分析1.2 映射1.3 页分配1.4 页释放1.5 测试 2. Print a page table (easy)2.1 简单分析2.2 实现2.3 测试 3. Detect which pages have been accessed (hard)3.1 简单分析3.2 实现3.2.1 获取参…

【Ajax】笔记-设置CORS响应头实现跨域

CORS CORS CORS是什么&#xff1f; CORS(Cross-Origin Resource Sharing),跨域资源共享。CORS是官方的跨域解决方案&#xff0c;它的特点是不需要在客户端做任何特殊的操作&#xff0c;完全在服务器中进行处理&#xff0c;支持get和post请求。跨域资源共享标准新增了一组HTTP首…

【新版系统架构补充】-嵌入式技术

嵌入式微处理体系结构 冯诺依曼结构 传统计算机采用冯诺依曼结构&#xff0c;也称普林斯顿结构&#xff0c;是一种将程序指令存储器和数据存储器合并在一起的存储器结构 冯诺依曼的计算机程序和数据共用一个存储空间&#xff0c;程序指令存储地址和数据存储地址指向同一个存…

Nginx启动报错- Failed to start The nginx HTTP and reverse proxy server

根据日志&#xff0c;仍然出现 “bind() to 0.0.0.0:8888 failed (13: Permission denied)” 错误。这意味着 Nginx 仍然无法绑定到 8888 端口&#xff0c;即使使用 root 权限。 请执行以下操作来进一步排查问题&#xff1a; 确保没有其他进程占用 8888 端口&#xff1a;使用以…

【雕爷学编程】MicroPython动手做(27)——物联网之掌控板小程序2

知识点&#xff1a;什么是掌控板&#xff1f; 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片&#xff0c;支持WiFi和蓝牙双模通信&#xff0c;可作为物联网节点&#xff0c;实现物联网应用。同时掌控板上集成了OLED…

使用 Docker Compose 部署 Redis Cluster 集群,轻松搭建高可用分布式缓存

Redis Cluster&#xff08;Redis 集群&#xff09;是 Redis 分布式解决方案的一部分&#xff0c;它旨在提供高可用性、高性能和横向扩展的功能。Redis Cluster 能够将多个 Redis 节点组合成一个分布式集群&#xff0c;实现数据分片和负载均衡&#xff0c;从而确保在大规模应用场…

Java源码规则引擎:jvs-rules 8月新增功能介绍

JVS-rules是JAVA语言下开发的规则引擎&#xff0c;是jvs企业级数字化解决方案中的重要配置化工具&#xff0c;核心解决业务判断的配置化&#xff0c;常见的使用场景&#xff1a;金融信贷风控判断、商品优惠折扣计算、对员工考核评分等各种变化的规则判断情景。 8月是收获的季节…

antDv table组件滚动截图方法的实现

在开发中经常遇到table内容过多产生滚动的场景&#xff0c;正常情况下不产生滚动进行截图就很好实现&#xff0c;一旦产生滚动就会变得有点棘手。 下面分两种场景阐述解决的方法过程 场景一&#xff1a;右侧不固定列的情况 场景二&#xff1a;右侧固定列的情况 场景一 打开…