TCP 连接,一端断电和进程崩溃有什么区别?

TCP 连接,一端断电和进程崩溃有什么区别?

  • 前言
  • 主机崩溃
  • 进程崩溃
  • 有数据传输的场景
    • 客户端主机宕机,又迅速重启
    • 客户端主机宕机,一直没有重启
  • 总结

前言

有的小伙伴在面试腾讯的时候,遇到了这么个问题:

在这里插入图片描述

这个属于 TCP 异常断开连接的场景,这部分内容在我的「图解网络」还没有详细介绍过,这次就乘着这次机会补一补。

在这里插入图片描述

这个问题有几个关键词:

  • 没有开启 keepalive;
  • 一直没有数据交互;
  • 进程崩溃;
  • 主机崩溃;

我们先来认识认识什么是 TCP keepalive 呢?

这东西其实就是 TCP 的保活机制,它的工作原理我之前的文章写过,这里就直接贴下以前的内容。

在这里插入图片描述

如果两端的 TCP 连接一直没有数据交互,达到了触发 TCP 保活机制的条件,那么内核里的 TCP 协议栈就会发送探测报文。

  • 如果对端程序是正常工作的。当 TCP 保活的探测报文发送给对端, 对端会正常响应,这样 TCP 保活时间会被重置,等待下一个 TCP 保活时间的到来。
  • 如果对端主机崩溃,或对端由于其他原因导致报文不可达。当 TCP 保活的探测报文发送给对端后,石沉大海,没有响应,连续几次,达到保活探测次数后,TCP 会报告该 TCP 连接已经死亡。

所以,TCP 保活机制可以在双方没有数据交互的情况,通过探测报文,来确定对方的 TCP 连接是否存活。

在这里插入图片描述

注意,应用程序若想使用 TCP 保活机制需要通过 socket 接口设置 SO_KEEPALIVE 选项才能够生效,如果没有设置,那么就无法使用 TCP 保活机制。

主机崩溃

知道了 TCP keepalive 作用,我们再回过头看题目中的「主机崩溃」这种情况。

在没有开启 TCP keepalive,且双方一直没有数据交互的情况下,如果客户端的「主机崩溃」了,会发生什么。

客户端主机崩溃了,服务端是无法感知到的,在加上服务端没有开启 TCP keepalive,又没有数据交互的情况下,服务端的 TCP 连接将会一直处于 ESTABLISHED 连接状态,直到服务端重启进程。

所以,我们可以得知一个点,在没有使用 TCP 保活机制且双方不传输数据的情况下,一方的 TCP 连接处在 ESTABLISHED 状态,并不代表另一方的连接还一定正常。

进程崩溃

那题目中的「进程崩溃」的情况呢?

TCP 的连接信息是由内核维护的,所以当服务端的进程崩溃后,内核需要回收该进程的所有 TCP 连接资源,于是内核会发送第一次挥手 FIN 报文,后续的挥手过程也都是在内核完成,并不需要进程的参与,所以即使服务端的进程退出了,还是能与客户端完成 TCP四次挥手的过程。

我自己做了实验,使用 kill -9 来模拟进程崩溃的情况,发现在 kill 掉进程后,服务端会发送 FIN 报文,与客户端进行四次挥手。

所以,即使没有开启 TCP keepalive,且双方也没有数据交互的情况下,如果其中一方的进程发生了崩溃,这个过程操作系统是可以感知的到的,于是就会发送 FIN 报文给对方,然后与对方进行 TCP 四次挥手。

在这里插入图片描述

有数据传输的场景

以上就是对这个面试题的回答,接下来我们看看在「有数据传输」的场景下的一些异常情况:

  • 第一种,客户端主机宕机,又迅速重启,会发生什么?
  • 第二种,客户端主机宕机,一直没有重启,会发生什么?

客户端主机宕机,又迅速重启

在客户端主机宕机后,服务端向客户端发送的报文会得不到任何的响应,在一定时长后,服务端就会触发超时重传机制,重传未得到响应的报文。

服务端重传报文的过程中,客户端主机重启完成后,客户端的内核就会接收重传的报文,然后根据报文的信息传递给对应的进程:

  • 如果客户端主机上没有进程绑定该 TCP 报文的目标端口号,那么客户端内核就会回复 RST 报文,重置该 TCP 连接;
  • 如果客户端主机上有进程绑定该 TCP 报文的目标端口号,由于客户端主机重启后,之前的 TCP 连接的数据结构已经丢失了,客户端内核里协议栈会发现找不到该 TCP 连接的 socket 结构体,于是就会回复 RST 报文,重置该 TCP 连接。

所以,只要有一方重启完成后,收到之前 TCP 连接的报文,都会回复 RST 报文,以断开连接。

客户端主机宕机,一直没有重启

这种情况,服务端超时重传报文的次数达到一定阈值后,内核就会判定出该 TCP 有问题,然后通过 Socket 接口告诉应用程序该 TCP 连接出问题了,于是服务端的 TCP 连接就会断开。

在这里插入图片描述

那 TCP 的数据报文具体重传几次呢?

在 Linux 系统中,提供一个叫 tcp_retries2 配置项,默认值是 15,如下图:

在这里插入图片描述

这个内核参数是控制,在 TCP 连接建立的情况下,超时重传的最大次数。

不过 tcp_retries2 设置了 15 次,并不代表 TCP 超时重传了 15 次才会通知应用程序终止该 TCP 连接,内核会根据 tcp_retries2 设置的值,计算出一个 timeout(如果 tcp_retries2 =15,那么计算得到的 timeout = 924600 ms),如果重传间隔超过这个 timeout,则认为超过了阈值,就会停止重传,然后就会断开 TCP 连接。

在发生超时重传的过程中,每一轮的超时时间(RTO)都是倍数增长的,比如如果第一轮 RTO 是 200 毫秒,那么第二轮 RTO 是 400 毫秒,第三轮 RTO 是 800 毫秒,以此类推。

而 RTO 是基于 RTT(一个包的往返时间) 来计算的,如果 RTT 较大,那么计算出来的 RTO 就越大,那么经过几轮重传后,很快就达到了上面的 timeout 值了。

举个例子,如果 tcp_retries2 =15,那么计算得到的 timeout = 924600 ms,如果重传总间隔时长达到了 timeout 就会停止重传,然后就会断开 TCP 连接:

  • 如果 RTT 比较小,那么 RTO 初始值就约等于下限 200ms,也就是第一轮的超时时间是 200 毫秒,由于 timeout 总时长是 924600 ms,表现出来的现象刚好就是重传了 15 次,超过了 timeout 值,从而断开 TCP 连接
  • 如果 RTT 比较大,假设 RTO 初始值计算得到的是 1000 ms,也就是第一轮的超时时间是 1 秒,那么根本不需要重传 15 次,重传总间隔就会超过 924600 ms。

最小 RTO 和最大 RTO 是在 Linux 内核中定义好了:

#define TCP_RTO_MAX ((unsigned)(120*HZ))
#define TCP_RTO_MIN ((unsigned)(HZ/5))

Linux 2.6+ 使用 1000 毫秒的 HZ,因此TCP_RTO_MIN约为 200 毫秒,TCP_RTO_MAX约为 120 秒。

如果tcp_retries设置为15,且 RTT 比较小,那么 RTO 初始值就约等于下限 200ms,这意味着它需要 924.6 秒才能将断开的 TCP 连接通知给上层(即应用程序),每一轮的 RTO 增长关系如下表格:

在这里插入图片描述

总结

如果「客户端进程崩溃」,客户端的进程在发生崩溃的时候,内核会发送 FIN 报文,与服务端进行四次挥手。

但是,「客户端主机宕机」,那么是不会发生四次挥手的,具体后续会发生什么?还要看服务端会不会发送数据?

  • 如果服务端会发送数据,由于客户端已经不存在,收不到数据报文的响应报文,服务端的数据报文会超时重传,当重传总间隔时长达到一定阈值(内核会根据 tcp_retries2 设置的值计算出一个阈值)后,会断开 TCP 连接;
  • 如果服务端一直不会发送数据,再看服务端有没有开启 TCP keepalive 机制?
    • 如果有开启,服务端在一段时间没有进行数据交互时,会触发 TCP keepalive 机制,探测对方是否存在,如果探测到对方已经消亡,则会断开自身的 TCP 连接;
    • 如果没有开启,服务端的 TCP 连接会一直存在,并且一直保持在 ESTABLISHED 状态。

最后说句,TCP 牛逼,啥异常都考虑到了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/606659.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一键审计 web 日志(teler)

在 web 系统遭受攻击之后,通常要审计 web 日志来寻找蛛丝马迹,那么有没有可以满足需求的自动化工具呢?今天就来尝试一款开源工具 teler,项目地址: https://github.com/kitabisa/teler/ 先来看一张作者测试图&#xff1…

NPDP|传统行业产品经理如何跨越鸿沟,从用户角度审视产品

随着科技的飞速发展和互联网的普及,产品经理的角色已经从单纯的产品规划者逐渐转变为全方位的用户体验设计者。对于传统行业的产品经理来说,这是一个挑战与机遇并存的时代。他们不仅要面对激烈的市场竞争,还要学会如何跨越与新兴科技行业之间…

一行Python代码可以做什么,超出你想象

哈喽,大家好,我是木头左! 揭秘编程语言的灵活性 在编程的世界里,简洁就是力量。Python以其优雅和简洁而著称,让开发者能够用更少的代码做更多的事。但这并不意味着功能上的妥协——Python的强大之处在于它允许在一行代…

【基于 PyTorch 的 Python 深度学习】5 机器学习基础(3)

前言 文章性质:学习笔记 📖 学习资料:吴茂贵《 Python 深度学习基于 PyTorch ( 第 2 版 ) 》【ISBN】978-7-111-71880-2 主要内容:根据学习资料撰写的学习笔记,该篇主要介绍了单 GPU 加速和多 GPU 加速,以及…

今年做电商,视频号小店绝对是明智之举,未来风口就在这里

大家好,我是电商笨笨熊 电商一直是近几年的热门创业方向; 但是面对众多电商平台,对于普通玩家的我们来说,该怎么选择呢? 今年来说,我会更愿意选择视频号小店。 作为一个腾讯推出的电商项目,…

LeetCode例题讲解:移动044

给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,0,3,12] 输出: [1,3,12,0,0] 示例 2: 输入: nums [0] 输出…

【STM32+HAL】DS18B20读取环境温度

一、准备工作 有关CUBEMX的初始化配置,参见我的另一篇blog:【STM32HAL】CUBEMX初始化配置 二、所用工具 1、芯片: STM32F407VET6 2、IDE: MDK-Keil软件 3、库文件:STM32F4xxHAL库 三、实现功能 串口打印当前温度值…

Day_3

1. HttpClient HttpClient是Apache的一个子项目&#xff0c;是高效的、功能丰富的支持HTTP协议的客户端编程工具包 作用&#xff1a;发送HTTP请求&#xff0c; 接受相应数据 <dependency><groupId>org.apache.httpcomponents</groupId><artifactId>…

Deep Learn Part Six Gated RNN-24.5.1

本章核心一句话&#xff1a; 卸下包袱&#xff0c;轻装上阵。--尼采 总述&#xff1a;本章所学内容 0.引子&#xff1a; 上一章介绍的 RNN 之所以不擅长学习时序数据的长期依赖关系&#xff0c;是因为 BPTT 会发生梯度消失和梯度爆炸的问题。本节我们将首先回顾一下上一章介…

21物联1班shift五次

1.选择推荐选项 2.等待 3.点击取消 4.选择查看问题详细信息 5.点击txt文件 6.找到system文件夹&#xff0c;将sethc改为qqq&#xff0c;将cmd文件改为sethc文件 7.单击完成。重新启动虚拟机。连续按五次shift出现cmd框&#xff0c;修改密码

MySql#MySql安装和配置

目录 一、卸载不需要的环境 二、安装mysql yum 源 三、开始安装 四、如果保证安装成功呢&#xff1f; 五、MySql 启动&#xff01; 六、登录mysql 七、配置文件说明 八、设置开机启动&#xff01; 本次安装是在Linux环境在centos7中完成 首先先将自己切换成root 一、…

彻底搞懂大小端存储and调试中内存窗口如何使用?

定义 首先我们有一个常识&#xff0c;Windows采用小端存储方式。 探究Windows下vs2019是什么存储&#xff1f; 在小端存储方式中&#xff0c;低字节存储在内存的低地址处&#xff0c;高字节存储在内存的高地址处。这与大端存储方式恰好相反&#xff0c;大端存储方式中高字节存…

[图解]DDD领域驱动设计浮夸,Eric Evans开了个坏头

0 00:00:00,630 --> 00:00:02,790 今天我们要讲的是 1 00:00:03,930 --> 00:00:07,420 DDD领域驱动设计浮夸 2 00:00:07,700 --> 00:00:10,590 Eric Evans开了个坏头 3 00:00:14,790 --> 00:00:17,380 在《领域驱动设计》的 4 00:00:18,650 --> 00:00:22,59…

QT:小项目:登录界面 (下一章连接数据库)

一、效果图 登录后&#xff1a; 二、项目工程结构 三、登录界面UI设计 四主界面 四、源码设计 login.h #ifndef LOGIN_H #define LOGIN_H#include <QDialog>namespace Ui { class login; }class login : public QDialog {Q_OBJECTpublic:explicit login(QWidge…

暴露自己IP地址有什么危险

暴露自己的IP地址确实存在一定的危险性&#xff0c;以下是关于这一问题的详细探讨&#xff1a; 一、IP地址的重要性 IP地址是互联网通信中的关键标识&#xff0c;它使得网络中的设备能够相互识别并进行数据传输。在网络世界中&#xff0c;每台设备都需要一个独特的IP地址来确…

2024蓝桥杯CTF writeUP--packet

根据流量分析&#xff0c;我们可以知道129是攻击机&#xff0c;128被留了php后门&#xff0c;129通过get请求来获得数据 129请求ls Respons在这 里面有flag文件 这里请求打开flag文件&#xff0c;并以base64编码流传输回来 获得flag的base64的数据 然后解码 到手

C语言 举例说明循环嵌套

今天 我们来说循环的嵌套 如果一个循环体内 又包含了另一个循环结构 我们称之为循环的嵌套 我们之前学的 While do-while for 都可以进行相互的嵌套 如下图 在 While 循环语句中再嵌套一个 While 循环语句 do-while 中嵌套 do-while for中嵌套 for 例如 我们做一个九九乘法…

mysql中varchar与bigint直接比较会导致精度丢失以至于匹配到多行数据

在mysql中&#xff0c;我们都知道如果一个索引字段使用了函数或者计算那么查询的时候索引会失效&#xff0c;可是我相信在联表的时候我们只会关注两个表关联字段是否都创建了索引&#xff0c;却没有关注过这两个字段的类型是否一致&#xff0c;如果不一致的话索引是会失效的&am…

Redis 实战3

系列文章目录 本文将从跳跃表的实现、整数集合来展开 Redis 实战 Ⅲ 系列文章目录跳跃表的实现跳跃表节点层 前进指针跨度 整数集合的实现升级升级的好处提升灵活性节约内存 降级整数集合 API总结 跳跃表的实现 Redis 的跳跃表由 redis.h/zskiplistNode 和 redis.h/zskiplist…

面向初学者:什么是图数据库

当数据成为关键生产要素&#xff0c;许多企业开始面临利用海量数据辅助企业复杂决策的现实难题。而在数据爆发式增长&#xff0c;关联复杂度激增的趋势下&#xff0c;图数据库成为企业加工关联数据、挖掘隐藏价值、智能决策升级的关键技术之一&#xff0c;在全球范围内开始被使…