大模型微调实战之强化学习 贝尔曼方程及价值函数(一)

大模型微调实战之强化学习 贝尔曼方程及价值函数

强化学习(RL)是机器学习中一个话题,不仅在人工智能方面。它解决问题的方式与人类类似,我们每天都在学习并在生活中变得更好。

作为一名大模型学习者,当开始深入研究强化学习时,需花了一些时间来了解幕后发生的事情,因为它与传统的机器学习技术相比往往有所不同。这篇文章将帮助你了解 强化学习算法的组成部分以及如何利用它们来解决 RL 问题。

强化学习问题由代理和环境组成。代理有一组操作可供选择。代理通过选择动作与环境交互。设计的环境必须为其内采取的操作提供反馈。这种反馈可以称为奖励,奖励可以是正的,也可以是负的,具体取决于所选操作的好坏。

一个简单的强化学习问题可以如图所示表示。代理具有一组可以在环境中移动的操作。环境是一个简单的迷宫,只有一个入口和出口,奖励位于出口处。代理的目标是找到通往黄金的道路并获得奖励。然后,智能体可以从环境中过去的经验中学习,以更好地寻找黄金。

在这里插入图片描述
随着智能体从环境中积累经验和奖励,它逐渐学会根据获得的奖励贪婪地行动。这使得它能够选择在环境中产生最大奖励的最佳行动。

强化学习的组成部分

  • 奖励:奖励(R)可以表示为来自环境的标量反馈,该反馈反映了代理在给定时间步长的环境中的表现。
  • 状态:状态 (S) 提供有关代理在环境中的位置的信息。
  • 动作:代理可以选择的动作集 (A)。
  • 策略:它保存代理的行为。它将动作映射到状态。
  • 价值函数:它是对给定代理所处状态的未来预期奖励的预测。可以用来评价一个状态的好坏。
  • 代理:可以选择在环境中采取的操作的函数或类。它由策略和 RL 算法组成,用于从过去的经验中学习。
  • 环境:可以输入代理动作并执行问题计算以解决并返回奖励的函数或类。

有限马尔可夫决策过程

一旦你对强化学习的组成部分有了充分的理解,就可以开始学习马尔可夫决策过程(通常称为(Markov Decision Process, MDP) 。 MDP 是构建 RL 问题的基础构建块。

在一个环境中,所有状态S都必须遵守马尔可夫性质。如果状态S内采取的行动完全取决于当前状态S以及预期的未来状态和要获得的预期奖励,而不是过去访问的状态,则状态S被认为是马尔可夫状态。这些状态的集合称为马尔可夫过程。

在这里插入图片描述
整个过程涉及智能体遍历不同的状态,环境的所有状态都遵循马尔可夫性质。这个过程称为马尔可夫决策过程。有限MDP对于构建和理解近 90% 的强化学习问题具有重要意义。它可以定义如下:给定环境中状态S和动作A的有限集合,执行动作A时,环境中从状态S ( t )到S ( t +1)的每个步骤都存在特定的概率
在这里插入图片描述
马尔可夫决策过程的简单示例:

在这里插入图片描述
IT 员工生命中的一天可以表示为一个简单的 马尔可夫决策过程,具有员工访问的不同状态,每个状态的转移概率为黑色,奖励为红色。
通过例子更好地理解概念。这个简单的示例可以让你深入了解如何从日常经验中导出基本的 马尔可夫决策过程。将自己想象为一名 IT 员工,从在办公室工作开始新的一天。轮班结束后,你面临一个决定:要么去健身房,要么出去社交和聚会。一旦你在健身房完成锻炼,你就会有动力健康饮食并睡个好觉。聚会后,你可以选择吃不健康或健康的食物。可以为员工访问的所有不同情况(状态)分配概率和奖励。从这个简单的 马尔可夫决策过程 中导出一些马尔可夫过程。

在这里插入图片描述

通过考虑各种转移概率, 可以构建从“工作”状态开始到“睡眠”状态结束的特定马尔可夫过程。在这个过程中, 可以将总奖励加起来。大家就了解了员工在不同状态下如何获得奖励,以及哪些后续状态会带来更大的奖励。通过对此类奖励采取贪婪行动,员工可以学会在 马尔可夫决策过程 中获得最大奖励。

在这里插入图片描述

大模型技术分享

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/606446.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

校验--ECC详细分析

ECC介绍 ECC 以下是针对瑞萨MCU的应用的ECC检测的详细分析。 当前公认安全有效的三大类公钥密钥体制分别为基于大数因子分解难题(RSA)、离散对数难题(DSA)和椭圆曲线离散对数(ECC)难题的密码体制。 保证RSA的安全性,则必须要增加密钥长度…

【最优传输二十九】Wasserstein Barycenterand Its Application to Texture Mixing

motivation 本文提出了离散概率分布的平均作为Monge-Kantorovich最优传输空间重心的新定义。为了克服数值求解这类问题所涉及的时间复杂性,原始的Wasserstein度量被一维分布上的切片近似所取代。这使我们能够引入一种新的快速梯度下降算法来计算点云的Wasserstein质…

Cesium 问题:billboard 加载未出来

文章目录 问题分析问题 接上篇 Cesium 展示——图标的依比例和不依比例缩放,使用加载 billboard 时,怀疑是路径的原因导致未加载成功 分析 原先

初步了解Kubernetes

目录 1. K8S概述 1.1 K8S是什么 1.2 作用 1.3 由来 1.4 含义 1.5 相关网站 2. 为什么要用K8S 3. K8S解决的问题 4. K8S的特性 5. Kubernetes集群架构与组件 6. 核心组件 6.1 Master组件 6.1.1 Kube-apiserver 6.1.2 Kube-controller-manager 6.1.3 kube-schedul…

算法学习008-登山爬石梯 c++动态规划/递归算法实现 中小学算法思维学习 信奥算法解析

目录 C登山爬石梯 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 七、推荐资料 C登山爬石梯 一、题目要求 1、编程实现 小明周末和朋友约好了一起去爬山,来到山下,发现登山道是…

【问题实操】银河高级服务器操作系统实例分享,开机之后反复重启

1.服务器环境以及配置 物理机/虚拟机/云/容器 物理机 外网/私有网络/无网络 私有网络 处理器: PHYTIUM FT2000PLUS 2200 MHz 内存: 128 GiB 整机类型/架构: HIKVISION DS-V BIOS版本: HK 601FBE02HK 网卡&#xff1…

VTK数据的读写--Vtk学习记录1--《VTK图形图像开发进阶》

读和写操作是VTK可视化管线两端相关的类--Reader和Writer类 Reader:将外部数据读入可视化管线,主要步骤如下 s1:实例化Reader对象 s2:指定所要读取的文件名 s3:调用Update()促使管线执行 对应的Writer: s1:实例化Writer对象 s2输入要写的数据以及指定写入的文…

实习报告怎么写?笔灵AI实习体验报告模版分享:AI产品前端实习生

实习报告怎么写?笔灵AI实习体验报告模版可以帮你 点击即可使用:https://ibiling.cn/scene/inex?fromcsdnsx 下面分享AI产品前端实习生的实习报告 尊敬的导师和领导们:首先,我想对你们表达我的诚挚感谢,感谢你们给我…

暗区突围国际服pc端海外版如何快速致富 暗区突围pc端怎么赚钱

暗区突围是一款由腾讯魔方工作室研发的高拟真硬核射击手游,以现代战争为游戏题材,采用了全新的u3d引擎打造,整体游戏画风逼真写实,搭配上优秀的射击玩法,辅以史诗级的背景配乐,致力于带给玩家无与伦比的枪战…

“漫画之家”|基于Springboot+vue的“漫画之家”系统(源码+数据库+文档)

“漫画之家”系统 目录 基于Springbootvue的“漫画之家”系统 一、前言 二、系统设计 三、系统功能设计 1系统功能模块 2后台模块 5.2.1管理员功能模块 5.2.2用户功能模块 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&a…

linux代码实操——信号的使用

信号的基本概念 信号是系统响应某个条件而产生的事件,进程接收到信号会执行相应的操作。 与信号有关的系统调用在“signal.h”头文件中有声明 常见信号的值,及对应的功能说明: 修改信号的响应方式 – signal() 我们来做个小实验: 在键盘上…

容联云孔淼:大模型落地与全域营销中台建设

近日,由金科创新社主办的2024区域性商业银行数智化转型研讨会顺利召开, 容联云产业数字云事业群副总经理、诸葛智能创始人孔淼受邀出席,并分享数智化转型实践经验。 他分享了容联云两大核心产品,“大模型应用容犀Copilot”在金融营…

OpenCV Radon变换探测直线(拉东变换)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 Radon变换可以将原始图像中直线特征的处理问题转化为变换域图像中对应点特征的处理问题,其中对应特征点的横坐标表示原始图像的旋转角度,一般来讲原始图像中的噪声不会分布在直线的特征上。因此,Radon变换在探测…

互联网洗鞋工厂实现新时代下的家庭洗护服务;

互联网洗鞋工厂实现新时代下的家庭洗护服务; 拽牛科技洗护系统以智慧城市系统为依托,洗鞋工厂为中心,利用互联网+社区服务商模式,实现了新时代下的家庭洗护服务, 将客户﹣﹣社区服务商&#xfe63…

笔灵AI实习体验报告模版:新媒体运营实习生

笔灵AI实习体验报告模版,可以自己输入岗位,有需要的可以试试https://ibiling.cn/scene/inex?fromcsdnsx 免费分享【新媒体运营实习生】的实习体验报告 尊敬的导师和领导们:首先,我想对给予我这次宝贵实习机会的公司表示衷心的感…

5月数学进度应该到哪里?听说24更难了,进度要加快吗?

刷一本习题册够吗?刷哪本?什么时候刷? 确实,24考完,大家都发现,没有一本习题册,覆盖了考试的所有知识点。 主流的模拟卷,都没有达到24卷的难度。 如何才能在最短的时间内&#xff…

SpringCloud Config 分布式配置中心

SpringCloud Config 分布式配置中心 概述分布式系统面临的——配置问题ConfigServer的作用 Config服务端配置Config客户端配置 可以有一个非常轻量级的集中式管理来协调这些服务 概述 分布式系统面临的——配置问题 微服务意味着要将单体应用中的业务拆分成一个个字服务&…

极市平台 | 一文详解视觉Transformer模型压缩和加速策略(量化/低秩近似/蒸馏/剪枝)

本文来源公众号“极市平台”,仅用于学术分享,侵权删,干货满满。 原文链接:一文详解视觉Transformer模型压缩和加速策略(量化/低秩近似/蒸馏/剪枝) 作者丨Feiyang Chen等 来源丨AI生成未来 编辑丨极市平台 0 极市导读 本研究…

C/C++ 初级球球大作战练手

效果演示&#xff1a; https://live.csdn.net/v/385490 游戏初始化 #include <stdbool.h> #include<stdio.h> #include<stdlib.h> #include<time.h> #include<graphics.h> #include <algorithm> #include<math.h> #include<mmsy…

【全开源】Java俱乐部系统社区论坛商城系统源码-奔驰奥迪保时捷大众宝马等汽车俱乐部

特色功能&#xff1a; 会员管理与服务&#xff1a;系统支持多种会员身份以及优惠政策的制定&#xff0c;如普通会员、VIP会员、黄金会员等&#xff0c;且可以根据会员等级不同&#xff0c;进行不同的营销策略。此外&#xff0c;还提供了会员信息录入、会员积分管理、消费记录管…