基于FPGA的超声波测距——UART串口输出

文章目录

  • 前言
  • 一、超声波模块介绍
    • 1、产品特点
    • 2、超声波模块的时序图
  • 二、系统设计
    • 1、系统模块框图
    • 2、RTL视图
  • 三、源码
    • 1、div_clk_us(1us的分频)
    • 2、产生驱动超声波的信号
    • 3、串口发送模块
    • 4、HC_SR04_uart(顶层文件)
  • 四、效果
  • 五、总结
  • 六、参考资料


前言

环境:
1、Quartus18.0
2、vscode
3、板子型号:EP4CE10F17C8
4、超声波模块:HC_SR04
要求:
使用 EP4CE10F17C8开发板驱动 超声波检测模块(HC_SR04 ),并将所测得数据显示到串口助手上。


一、超声波模块介绍

1、产品特点

HC-SR04超声波测距模块可提供2cm-400cm的非接触式距离感测功能,测距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。
基本工作原理:

(1)采用IO口 TRIG触发测距,给最少10us的高电平信呈。
(⑵)模块自动发送8个40khz的方波,自动检测是否有信号返回;
(3)有信号返回,通过IO口ECHO输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2;

在这里插入图片描述

2、超声波模块的时序图

在这里插入图片描述

以上时序图表明你只需要提供一个10uS 以上脉冲触发信号,该模块内部将发出8个40kHz周期电平并检测回波。一旦检测到有回波信号则输出回响信号。回响信号的脉冲宽度与所测的距离成正比。由此通过发射信号到收到的回响信号时间间隔可以计算得到距离。

二、系统设计

1、系统模块框图

在这里插入图片描述

2、RTL视图

在这里插入图片描述

三、源码

1、div_clk_us(1us的分频)

/**************
芯片晶振为50MHZ,HC_SR04需要一个10us的以上脉冲触发信号
所以这里我们需要对系统时钟进行分频,方便我们产生10us的持续电平
**************/
module div_clk_us (
    input sys_clk,
    input sys_rst_n,

    output wire  clk_us
);

//根据晶振换算,1us只需要计数50次即可

parameter [5:0] MAX_us = 6'd49;
reg [5:0] cnt;
always @(posedge sys_clk or negedge sys_rst_n) begin
    if(!sys_rst_n)begin
        cnt <= 6'd0;
    end
    else if(cnt == MAX_us)begin
        cnt <= 6'd0;
    end
    else begin
        cnt <= cnt + 6'd1;
    end
end
assign clk_us = cnt >= MAX_us;
endmodule

2、产生驱动超声波的信号

/****************
根据分频的1us时钟,产生一个持续10us的电平用于驱动HC_SR04
最好是稍微大于10us,这样稳妥一些
****************/
module trig_driver(
    input       sys_us        ,//1us时钟
    input       sys_rst_n     ,

    output      trig          //驱动超声波的信号
);

parameter T = 19'd29_9999;//设置触发信号的周期,这里设置得越小,其触发越频繁,应该返回的距离更新更频繁

reg [18:0] cnt;

always @(posedge sys_us) begin// or negedge sys_rst_n
    if(!sys_rst_n)begin
        cnt <= 19'd0;
    end
    else if(cnt == T)begin
        cnt <= 19'd0;
    end
    else begin
        cnt <= cnt + 1'd1;
    end
end
//15us的高电平
assign trig = (cnt <15 ) ? 1'b1 : 1'b0;//正确的,只是时间太短,观察不到,目前应该是串口问题
endmodule

3、串口发送模块

module uart_send
#(
    parameter  CLK        =   26'd50000000    ,    // 时钟频率
    parameter  BAUD        =   17'd115200           // 波特率
)
(
    input   wire            clk         ,
    input   wire            rstn        ,   
    input   wire    [7 : 0] data_in     ,   // 需要发送的数据
    input   wire            flag_in     ,   // 数据接收标志位,既发送标志位

    output  wire            tx_done     , 
    output  reg             UART_tx         // 串口输出位         
);

    localparam Baud_Clk     =   CLK/BAUD       ;    // 传输每个 Baud 需要的时钟数

    reg             tx_en       ;   // 发送使能
    reg             flag_bit    ;   // 比特标志位,采用下降沿发送
    reg [8 : 0]     cnt_baud    ;   // 波特率计数器
    reg [3 : 0]     cnt_bit     ;   // 比特计数器

    assign tx_done = cnt_bit == 4'd9 && flag_bit == 1'b1;

    // 发送使能
    always @(posedge clk or negedge rstn) begin
        if(!rstn) begin
            tx_en <= 1'b0;
        end
        // 已经发送了十位 bit 并且到达下一个下降沿,输入只需要判断到数据位最后一位,输出则需要判断完整输出
        else if(cnt_bit == 4'd9 && flag_bit == 1'b1) begin
            tx_en <= 1'b0;
        end
        else if(flag_in == 1'b1) begin
            tx_en <= 1'b1;
        end
    end

    // 波特计数器
    always @(posedge clk or negedge rstn) begin
        if(!rstn) begin
            cnt_baud <= 9'd0;
        end
        // 传输完成所有波特或者使能失效,表示发送结束
        else if(cnt_baud == Baud_Clk - 1'b1 || tx_en == 1'b0) begin
            cnt_baud <= 9'd0;
        end
        else begin
            cnt_baud <= cnt_baud + 9'd1;
        end
    end

    always @(posedge clk or negedge rstn) begin
        if(!rstn) begin
            flag_bit <= 1'b0;
        end
        // 只有刚开始发送的一瞬间会产生一个时钟周期上升沿和下降沿
        else if(cnt_baud == 9'd1) begin
            flag_bit <= 1'b1;
        end
        else begin
            flag_bit <= 1'b0;
        end
    end

    // 计数10分有效数据位
    always @(posedge clk or negedge rstn) begin
        if(!rstn) begin
            cnt_bit <= 4'd0;
        end
        // 已经发送了十位 bit 并且到达下一个下降沿
        else if(cnt_bit == 4'd9 && flag_bit == 1'b1) begin
            cnt_bit <= 4'd0;
        end
        // 使能有效,下降沿发送数据
        else if(flag_bit == 1'b1 && tx_en == 1'b1) begin
            cnt_bit <= cnt_bit + 4'd1;
        end
        else begin
            cnt_bit <= cnt_bit;
        end
    end

    // 满足 RS232 协议 起始位为 0,停止位为 1,并按位输出
    always @(posedge clk or negedge rstn) begin
        if(!rstn) begin
            UART_tx <= 1'd1;
        end
        // 下降沿发送数据
        else if(flag_bit == 1'b1) begin
            case (cnt_bit)
                0:       UART_tx <= 1'd0        ;
                1:       UART_tx <= data_in[0]  ;
                2:       UART_tx <= data_in[1]  ;
                3:       UART_tx <= data_in[2]  ;
                4:       UART_tx <= data_in[3]  ;
                5:       UART_tx <= data_in[4]  ;
                6:       UART_tx <= data_in[5]  ;
                7:       UART_tx <= data_in[6]  ;
                8:       UART_tx <= data_in[7]  ;
                9:       UART_tx <= 1'd1        ;
                default: UART_tx <= 1'd1        ;
            endcase
        end
    end
endmodule //UART_send

4、HC_SR04_uart(顶层文件)

module HC_SR04_uart(
    input               sys_clk       ,
    input               sys_rst_n     ,
    input               echo          ,
    input        		uart_rx		  , // 串口输入 

    output              trig          ,         
    output              uart_tx       //串口发送端口
);
wire             clk_us;
wire [18:0]      data_o_r;//待发送的数据
//时钟分频
div_clk_us div_clk_us_inst(
    /*input */      .sys_clk         (sys_clk  ),
    /*input */      .sys_rst_n       (sys_rst_n),

    /*output*/      .clk_us          (clk_us)
);
//产生驱动超声波信号
trig_driver trig_driver_inst(
    /*input */      .sys_us        (clk_us),//1us时钟
    /*input */      .sys_rst_n     (sys_rst_n),

    /*output*/      .trig          (trig)//驱动超声波的信号
);
//对返回来的echo信号进行计算得出距离
echo_driver echo_driver_inst(
    /*input        */   .sys_clk         (sys_clk),
    /*input        */   .sys_us          (clk_us),
    /*input        */   .sys_rst_n       (sys_rst_n),
    /*input        */   .echo            (echo),

    /*output [18:0]*/   .data_o          (data_o_r)//检测距离,保留三位小数,*1000实现
);
//初步想法是使用串口发送模块直接操作,不需要串口回环,否则需要发送到接收,接收模块再发送给发送模块,发送模块再发送给PC
uart_driver2 uart_driver2_inst(
	.clk         (sys_clk  ),
	.rstn        (sys_rst_n),
	.data_in	 (data_o_r	),
    .UART_rx     (uart_rx),

	.UART_tx     (uart_tx	)
);
endmodule

四、效果

FPGA串口输出测距信息


五、总结

前面写过FPGA测距的数码管显示,STM32的测距串口输出,其实这篇文章的内容之前完成过。由于前面又学习了一边串口回环,所以又敲了一遍,实现一下FPGA的串口输出。虽然做过,但是还是折腾了一天,仿真、SignalTap II 抓了一下午的信号。但这次比上一次的理解更加深刻,收获更多。

六、参考资料

1、基于FPGA的超声波测距——数码管显示
2、源码:https://github.com/no1jiangjiang/HC-SR04_uart_FPGA

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/60517.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

阿里云安全组设置

简介​ 云主机安全组必须打开如下端口&#xff1a; ssh&#xff1a;22http&#xff1a;80https&#xff1a;443ftp&#xff1a;21、20000&#xff5e;30000 阿里云安全组端口开放教程​ 腾讯云安全组端口开放教程​ 华为云安全组端口开放教程​

ES6新增的语法

ES6实际上是一个泛指&#xff0c;泛指 ES2015 及后续的版本 1&#xff0c;let用于声明变量的关键字 let 声明的变量只在所处于的代码块内有效 if (true) { let a 10 } console.log(a) // a is not defined 2, let 不存在变量提升 console.log(a) // a is not deined let a 1…

Vue + ElementUI 实现可编辑表格及校验

效果 完整代码见文末 实现思路 使用两个表单分别用于实现修改和新增处理。 通过一个editIndex变量判断是否是编辑状态来决定是否展示输入框&#xff0c;当点击指定行的修改后进行设置即可&#xff1a; <el-table-columnv-for"(column, index) in columns":key&qu…

华为QinQ技术的基本qinq和灵活qinq 2种配置案例

基本qinq配置&#xff1a; 运营商pe设备在收到同一个公司的ce发来的的包&#xff0c;统一打上同样的vlan &#xff0c;如上图&#xff0c;同一个家公司两边统一打上vlan 2&#xff0c;等于在原内网vlan 10或20过来的包再统一打上vlan 2的标签&#xff0c;这样传输就不会和其它…

基于text2vec和faiss开发实现文档查询系统初体验

最近接触到了一些文本向量化的预训练模型&#xff0c;感觉相比较自己去基于gensim去训练词向量来说&#xff0c;使用预训练模型可能是更高效的方式了&#xff0c;正好有一个想法一直在想能够以什么样的形式间接的实现问答&#xff0c;说白了这里的问答跟我们理解的chatGPT类型的…

Spark 3.1.1 遇到的 from_json regexp_replace组合表达式慢问题的解决

背景 目前公司在从spark 2.4.x升级到3.1.1的时候&#xff0c;遇到了一类SQL极慢的情况&#xff0c;该SQL的如下(只列举了关键的)&#xff1a; select device_personas.* from(selectdevice_id, ads_id, from_json(regexp_replace(device_personas, (?<(\\{|,))"devic…

【数据结构】——线性表的相关习题

目录 题型一&#xff08;线性表的存储结构&#xff09;题型二&#xff08;链表的判空&#xff09;题型三&#xff08;单链表的建立&#xff09;题型四&#xff08;顺序表、单链表的插入删除操作&#xff09;题型五&#xff08;双链表的插入删除操作&#xff09;题型六&#xff…

【ARM Coresight 系列文章 2.5 - Coresight 寄存器:PIDR0-PIDR7,CIDR0-CIDR3 介绍】

文章目录 1.1 JEDEC 与 JEP1061.2 PIDR0-PIDR7(peripheral identification registers)1.2 CIDR0-CIDR3(Component Identification Registers) 1.1 JEDEC 与 JEP106 JEDEC和JEP106都是来自美国电子工业联合会&#xff08;JEDEC&#xff0c;Joint Electron Device Engineering C…

SpringBoot单元测试

目录 1.什么是单元测试? 2.单元测试有哪些好处? 3.Spring Boot单元测试使⽤ 单元测试的实现步骤 1. ⽣成单元测试类 2. 添加单元测试代码 2.1 .添加Spring Boot框架测试注解:SpringBootTest 2.2 添加单元测试业务逻辑 简单的断⾔说明 1.什么是单元测试? 单元测试(un…

分页Demo

目录 一、分页对象封装 分页数据对象 分页查询实体类 实体类用到的utils ServiceException StringUtils SqlUtil BaseMapperPlus,> BeanCopyUtils 二、示例 controller service dao 一、分页对象封装 分页数据对象 import cn.hutool.http.HttpStatus; import com.…

Python-flask项目入门

一、flask对于简单搭建一个基于python语言-的web项目非常简单 二、项目目录 示例代码 git路径 三、代码介绍 1、安装pip依赖 通过pip插入数据驱动依赖pip install flask-sqlalchemy 和 pip install pymysql 2.配置数据源 config.py DIALECT mysql DRIVER pymysql USERN…

SQL-每日一题【1164. 指定日期的产品价格】

题目 产品数据表: Products 写一段 SQL来查找在 2019-08-16 时全部产品的价格&#xff0c;假设所有产品在修改前的价格都是 10 。 以 任意顺序 返回结果表。 查询结果格式如下例所示。 示例 1: 解题思路 1.题目要求我们查找在 2019-08-16 时全部产品的价格&#xff0c;假设所…

关于java异常的整理

文章目录 一、异常分类二、throw、throws、try-catch-finally三、CglibAopProxy中对异常的处理4、关于UndeclaredThrowableException 一、异常分类 java异常层级结构 Throwable:所有异常的根接口 Error:严重错误,程序无法处理和恢复 例如VirtualMachineError,OOMError等 Excep…

【图像去噪】基于原始对偶算法优化的TV-L1模型进行图像去噪研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

8.5作业

要求实现AB进程对话 a.A进程先发送一句话给B进程&#xff0c;B进程接收后打印 b.B进程再回复一句话给A进程&#xff0c;A进程接收后打印 c.重复1.2步骤&#xff0c;当收到quit后&#xff0c;要结束AB进程 A进程 #include<stdio.h> #include<string.h> #include&…

【新版系统架构补充】-七层模型

网络功能和分类 计算网络的功能 &#xff1a;数据通信、资源共享、管理集中化、实现分布式处理、负载均衡 网络性能指标&#xff1a;速率、带宽&#xff08;频带宽度或传送线路速率&#xff09;、吞吐量、时延、往返时间、利用率 网络非性能指标&#xff1a;费用、质量、标准化…

【Rust】Rust学习

文档&#xff1a;Rust 程序设计语言 - Rust 程序设计语言 简体中文版 (bootcss.com) 墙裂推荐这个文档 第一章入门 入门指南 - Rust 程序设计语言 简体中文版 第二章猜猜看游戏 猜猜看游戏教程 - Rust 程序设计语言 简体中文版 (bootcss.com) // 导入库 use std::io; use s…

2023.08.01 驱动开发day8

驱动层 #include <linux/init.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/interrupt.h> #include <linux/fs.h> #include <linux/gpio.h> #include <linux/of_gpio.h>#…

NVM保姆级安装配置

nvm安装配置 1、NVM简介2、NVM安装三、NVM使用四、NVM常用命令 1、NVM简介 在项目开发过程中&#xff0c;使用到vue框架技术&#xff0c;需要安装node下载项目依赖&#xff0c;但经常会遇到node版本不匹配而导致无法正常下载&#xff0c;重新安装node却又很麻烦。为解决以上问…

Docker 网络模型使用详解 (1)Dockers网络基础

目录 环境准备 Dockers 网络基础 1.端口映射 查看随机映射端口范围 -p可以指定映射到本地端口 映射指定地址和指定端口 映射指定地址 宿主机端口随机分配 指定传输协议 端口暴露 容器互联 自定义网络 现在把container7加入到demo_net中 在启动一个容器加入到demo_net…