国科大深度学习期末历年试卷

本文借鉴
国科大深度学习复习
深度学习期末

深度学习2020

一.名词解释(每个2分,共10分)

深度学习,稀疏自编码器,正则化,集成学习,Dropout

二.简答题(每题5分,共30分)

1.请简述你对误差反向传播算法的理解。
2.请列出卷积神经网络的主要结构模块,以及各个模块完成的功能。
3.请简述你对LSTM的理解,并解释为什么它能够解决长时依赖问题。
4.请简述深度学习中常见的避免过拟合的方法。
5.请简述你对生成对抗网络的理解,并简述其训练过程。
6.请简述你对胶囊网络的理解。

三.计算题(每题10分,共20分)

1.请使用卷积神经网络中的Full卷积、Same卷积和Valid卷积分别计算下图所示输入矩阵和卷积核对应的特征图,卷积步长为1,激活函数采用ReLU。

在这里插入图片描述

2.多分类任务中,某个样本的期望输出为(0,0,0,1),两个模型A和B都采用交叉熵作为损失函数,针对该样本的实际输出分别为(In20,In40,In60,In80)、(In10,In30,ln50,In90),采用Softmax 函数对输出进行归一化并计算两个模型的交叉熵,说明哪个模型更好。提示:lg2≈0.301,lg3≈0.477。

四.设计题(每题20分,共40分)

1.请给出对大量图像进行目标检测的设计方案,要求有自己的新思路和新观点。
2.请给出机器阅读理解模型的设计方案,要求有自己的新思路和新观点。

深度学习2021

一.名词解释(每个2分,共10分)

卷积神经网络,循环神经网络,奇异值外解,交叉熵,深度信念网络

二、简答题(每题5分,共30分)

1. 请简述反向传播算法的思想,并用图和公式说明其过程。
2. 什么是过拟合和欠拟合?如何解决这两种问题?
3. 请简述 Yolo 算法的主要思想和实现过程。
4. 请简述GRU网络的主要思想,并用图和公式表达其计算过程.
5. 请简述胶囊网络的主要思想,并用图和公式表达其计算过程。
6. 请简述生成对抗网络的主要原理,并用公式表达其目标函数.

三,计算题(每题10分,共20分)

1, 请使用卷积神经网络中的Full卷积、Same卷积和Valid卷积分别计算下图所示输入矩阵和卷积核对应的特征图,卷积步长为1,激活函数采用ReLU.

在这里插入图片描述

2. 二分类任务中,样本(5个)的期望输出(类标签)如下图左侧矩阵所示,对应的实际输出下图右侧矩阵所示,模型采用交叉熵作为损失函数,计算:

在这里插入图片描述

(1) 模型的交叉熵损失;
(2) 模型的焦点损失(Focal loss),其中y= 2, a = 0.4.

提示:Ig2≈0.301,Ig3≈0.477.

四.设计题(每题20分,共40分)

1.请给出姿态估计模型的设计方案,要求有自己的新思路和新观点。
import tensorflow as tf

input_x = tf.constant([
    [[[5, 6, 0, 1, 8, 2],
      [0, 9, 8, 4, 6, 5],
      [2, 6, 5, 3, 8, 4],
      [6, 3, 4, 9, 1, 0],
      [7, 5, 9, 1, 6, 7],
      [2, 5, 9, 2, 3, 7]

      ]]])
filters = tf.constant([
    [[[0, -1, 1], [1, 0, 0], [0, -1, 1]]]
])

input_x=tf.reshape(input_x,(1,6,6,1))
filters=tf.reshape(filters,[3,3,1,1])

res = tf.nn.conv2d(input_x, filters, strides=1, padding='VALID')
print('Valid 无激活函数下的输出',res)
res=tf.squeeze(res)
print('Valid 条件下可视化的输出:',res)


# print('Valid 激活函数下输出',tf.nn.relu(res))
print('Valid 激活函数下可视化输出:',tf.squeeze(tf.nn.relu(res)))
#在full卷积下,TF中没有这个参数,可以手动加0实现
input_x = tf.constant([
    [[[0,0,0,0,0,0,0,0],
  [0,5,6,0,1,8,2,0],
  [0,2,5,7,2,3,7,0],
  [0,0,7,2,4,5,6,0],
  [0,5,3,6,9,3,1,0],
  [0,6,5,3,1,4,6,0],
  [0,5,2,4,0,8,7,0],
    [0,0,0,0,0,0,0,0]
]]])
input_x=tf.reshape(input_x,(1,8,8,1))

res = tf.nn.conv2d(input_x, filters, strides=1,padding='SAME')
print('Full(加0)未使用激活之前的输出',res)

print('Full(加0)未使用激活函数之前的可视化输出,',tf.squeeze(res))

out = tf.nn.relu(res)
print('Full 激活的输出',out)
print('Full 激活之后的可视化输出,',tf.squeeze(out))
2.请给出图像描述模型的设计方案,要求有自己的新思路和新观点。
import torch
import torch.nn as nn

criterion = nn.BCELoss()#默认是求均值,数据需要是浮点型数据
pre=torch.tensor([0.1,0.2,0.3,0.4]).float()
tar=torch.tensor([0,0,0,1]).float()
l=criterion(pre,tar)
print('二分类交叉熵损失函数计算(均值)',l)


pre=torch.tensor([0.2,0.8,0.4,0.1,0.9]).float()
tar=torch.tensor([0,1,0,0,1]).float()

pre=torch.tensor([0.1,0.2,0.3,0.4]).float()
tar=torch.tensor([0,0,0,1]).float()
criterion = nn.BCELoss(reduction="sum")#求和
l=criterion(pre,tar)
print('二分类交叉熵损失函数计算(求和)',l)

loss=nn.BCELoss(reduction="none")#reduction="none"得到的是loss向量#对每一个样本求损失
l=loss(pre,tar)
print('每个样本对应的loss',l)
criterion2=nn.CrossEntropyLoss()
import numpy as np
pre1=torch.tensor([np.log(20),np.log(40),np.log(60),np.log(80)]).float()
# soft=nn.Softmax(dim=0)
# pre=soft(pre).float()#bs*label_nums
pre1=pre1.reshape(1,4)
tar=torch.tensor([3])
loss2=criterion2(pre1,tar)
print('多分类交叉熵损失函数pre1条件下',loss2)

pre2=torch.tensor([np.log(10),np.log(30),np.log(50),np.log(90)]).float()
pre2=pre2.reshape(1,4)
tar=torch.tensor([3])
loss2=criterion2(pre2,tar)
print('多分类交叉熵损失函数pre2条件下',loss2)

深度学习2022

一.名词解释(每个2分,共10分)

深度学习,相对熵,欠拟合,深度森林,降噪自编码器

二.简答题(每题5分,共20分)

1.请简述Dropout的实现方式,并阐述你理解的它对于解决过拟合问题的原因。
2.请简述你对Batch Normalization的理解,并说明其在训练和测试阶段如何实现?
3.请简述你对生成对抗网络的理解,并简述其训练过程。
4.请简述你对残差网络的理解,并解释为什么它能够解决梯度消失问题。

三.计算题(每题15分,共30分)

1.如下图卷积神经网络所示:卷积层C1为3x3大小的卷积核,卷积层深度为5,Stride=1,卷积层C2为5x5大小的卷积核,卷积层深度为2,stride=1,卷积方式均为Valid卷积;池化层P1为2x2大小的均值池化,stride=2;输出层是10x1的向量;请计算输出特征图F1、F2和F3的大小(宽x高x通道数),特征图F3的感受野大小,并分别计算卷积层和全连接层的参数量(其中卷积和全连接操作均不考虑偏置参数,提示:注意卷积层深度的概念)。

在这里插入图片描述

2.根据表格中的数据使用ID3算法构建决策树,预测西瓜好坏,给出每步的计算过程(信息熵计算以2为底数)。

在这里插入图片描述

在这里插入图片描述

四.设计题(每题20分,共40分)

1.请给出图像描述的设计方案,要求有自己的新思路和新观点。
2.请给出视频超分辨率模型的设计方案,要求有自己的新思路和新观点。

深度学习2023

一.名词解释(每个2分,共10分)

深度信念网络,胶囊网络,深度可分离卷积,目标检测,焦点损失(Focal loss)

二.简答题(每题5分,共30分)

请写出对矩阵Amxn(m≠n)进行奇异值分解的过程。请图示说明卷积神经网络的主要组成部分及其功能。请给出GRU的主要思想,并用图和公式说明。请简述神经网络模型中Dropout正则化方法的主要思想并图示说明。请简述随机梯度下降法的基本思想并图示说明。请简述Transformer的主要思想,并用图和公式说明。

三.计算题(20分)

1.(12分)如下图所示,请计算输入矩阵输入卷积层之后得到的特征图,分别使用Same和Valid卷积,卷积步长为1,激活函数为ReLU。
在这里插入图片描述

2.(8分)有一个5分类任务,输入一个样例后,得到输出logits=[0.01,—0.01,—0.05,0.02,0.1],请计算其SoftMax分类概率;如其one—hot标签label=[0,0,0,0,1],请计算其交叉熵损失。(可使用电脑上或手机在这里插入图片描述
上的计算器,结果保留小数点后4位)
四.设计题(每题20分,共40分)

1.请给出图像分割的设计方案,写出代码并注释,要求有自己的新思路和新观点。
2.请给出神经机器翻译的设计方案,写出代码并注释,要求有自己的新思路和新观点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/604878.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Autoxjs 实践-Spring Boot 集成 WebSocket

概述 最近弄了福袋工具,由于工具运行中,不好查看福袋结果,所以我想将福袋工具运行数据返回到后台,做数据统计、之后工具会越来越多,就弄了个后台,方便管理。 实现效果 WebSocket? websocket是…

机器学习:基于TF-IDF算法、决策树,使用NLTK库对亚马逊美食评论进行情绪分析

前言 系列专栏:机器学习:高级应用与实践【项目实战100】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学…

论文阅读】 ICCV-2021-3D Local Convolutional Neural Networks for Gait Recognition

motivation :现有方法方法无法准确定位身体部位,不同的身体部位可以出现在同一个条纹(如手臂和躯干),一个部分可以出现在不同帧(如手)的不同条纹上。其次,不同的身体部位具有不同的尺度,即使是不同帧中的同一部分也可以出现在不同…

【光速上手 Hydra 】一行代码自动跑多次实验,Hydra 中的 Multirun 参数如何使用?

Hydra 是一个开源的 Python 框架,简化了研究和其他复杂应用的开发。其关键特性是能够通过组合动态地创建一个分层次的配置,并通过配置文件和命令行进行覆盖。Hydra 的名称来源于其能够运行多个类似的作业 - 就像一个有多个头的九头蛇一样。 主要特性&am…

泽众财务RPA机器人常见五个应用场景

泽众RPA(即机器人流程自动化,Robotic Process Automation, RPA)解决方案是依托于各类先进信息技术手段的虚拟劳动力 (数字劳动力),根据预先设定的程序操作指令对任务进行自动化处理,实现业务流程…

解锁机械之美:发动机设备拆解可视化揭秘

在现代工程技术的世界里,发动机作为机械设备的心脏,始终扮演着至关重要的角色。图扑的发动机设备拆解可视化技术,以其独特的视角和精确的细节,为我们开启了一扇了解复杂机械结构的新窗。通过高清晰度的三维图像和动画,…

在阿里云K8S容器中,部署websocket应用程序的总结

一、背景 有一个websocket应用程序,使用spring boot框架开发,http端口号是6005,提供的是websocket服务,所以它还监听一个8889端口的tcp协议。 现在要把它部署到阿里云的k8s容器里,本文着重描述service层的配置。 因…

鸿蒙开发接口Ability框架:【 (ServiceExtensionAbility)】

ServiceExtensionAbility ServiceExtensionAbility模块提供ServiceExtension服务扩展相关接口的能力。 说明: 本模块首批接口从API version 9开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 本模块接口仅可在Stage模型下使用。 导入…

【linux软件基础知识】-死锁问题

死锁问题 当两个或多个线程由于每个线程都在等待另一个线程持有的资源而无法继续时,就会发生死锁 如下图所示, 在线程 1 中,代码持有了 L1 上的锁,然后尝试获取 L2 上的锁。 在线程 2 中,代码持有了 L2 上的锁,然后尝试获取 L1 上的锁。 在这种情况下,线程 1 已获取 L…

减速机齿数速算

1.齿轮相关参数 1.1 模数 , 因为 齿数*齿距 Pi*直径 所以:直径/齿数 齿距/PI 模数 国标现行标准(截止2024/5)是: GB/ 1357-2008 / ISO 54-1996 模数有国标的一个序列标准: 1.2.轴径 轴径的国标是&a…

【测试报告】星光日册

⭐ 作者:Jwenen 🌱 作者主页:Jwenen的个人主页 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 测试报告 1. 项目介绍2. 测试用例框架3. 自动化测试源码 1. 项目介绍 “星光日册”项目实现了用…

追踪攻击数据包中的真实IP地址:方法与技巧

在网络安全领域,追踪攻击数据包中的真实IP地址是一项至关重要的任务。通过确定攻击者的真实IP地址,可以有效地识别和阻止网络攻击行为,提高网络安全防御水平。IP数据云IP地址查询将介绍几种常用的方法和技巧,帮助安全人员有效追踪…

【Linux】CAN根据时钟频率、波特率计算采样点详解

1、采样点知识回顾 参考博客:【CAN】知识点:帧类型、数据帧结构、传输速率、位时间、采样点 CAN 采样点是指在一个数据位的传输周期内,接收器实际采样数据的时间点。这个时间点是以百分比来表示的,它决定了在数据位的传输周期中,何时读取数据位的值。 正确设置采样点对…

60*13薪,外包到新疆...去吗?

大家好,我是白露呀。 今天我在牛客上看到一篇帖子,一位网友说自己收到一个 offer ,薪资很高:60k*13,大约一年有近80万。 但是有个要求是外包到新疆的乌鲁木齐,他拿不定主意,就在牛客上发了这个…

华为数据之道第三部分导读

目录 导读 第三部分 第7章 打造“数字孪生”的数据全量感知能力 “全量、无接触”的数据感知能力框架 数据感知能力的需求起源:数字孪生 数据感知能力架构 基于物理世界的“硬感知”能力 “硬感知”能力的分类 “硬感知”能力在华为的实践 基于数字世界的…

Options API:选项式 API改成Composition API:组合式 API的留言板

让我欢喜让我忧 改成Composition API:组合式 API的代码&#xff0c; <template><!-- start --><span class"span_checkbox">操作<input type"checkbox" v-model"showInput" value"操作" /></span><…

VueReal将在Display Week上推出microLED创新技术

公司展示将microLED从晶圆转移到背板的“改变游戏规则”的平台 在2024年显示周&#xff08;5月12日至16日在圣何塞举行&#xff09;上&#xff0c;VueReal将展示其MicroSolid打印平台&#xff0c;并展示其在推动微LED显示器和其他微型半导体器件在智能手机显示器和AR/VR解决方案…

探索鸿蒙开发:鸿蒙系统如何引领嵌入式技术革新

嵌入式技术已经成为现代社会不可或缺的一部分。而在这个领域&#xff0c;华为凭借其自主研发的鸿蒙操作系统&#xff0c;正悄然引领着一场技术革新的浪潮。本文将探讨鸿蒙开发的特点、优势以及其对嵌入式技术发展的深远影响。 鸿蒙操作系统的特点 鸿蒙&#xff0c;作为华为推…

贪心算法-----柠檬水找零

今日题目&#xff1a;leetcode860 题目链接&#xff1a;点击跳转题目 分析&#xff1a; 顾客只会给三种面值&#xff1a;5、10、20&#xff0c;先分类讨论 当收到5美元时&#xff1a;不用找零&#xff0c;面值5张数1当收到10美元时&#xff1a;找零5美元&#xff0c;面值5张数…

jmeter控制器讲解

1&#xff0c;随机顺序控制器和随机控制器的区别&#xff1a;随机顺序控制器下所有的接口都会执行&#xff0c;只是执行顺序是随机的&#xff0c;随机控制器下所有的接口中随机执行一个接口&#xff0c;其余接口不执行。