STM32快速入门(串口传输之USART)

STM32快速入门(串口传输之USART)

前言

USART串口传输能实现信息在设备之间的点对点传输,支持单工、半双工、全全双工,一般是有三个引脚:TX、RX、SW_RX(共地)。不需要一根线来同步时钟。最大优点是可以和电脑通信,实现程序调试的功能。

导航

图248 USART框图:

整体框图

图片引自STM32 F1XX系列的中文参考手册。

USART发送和接收的实现细节

第一部分

首先,对于图248的1号矩形框部分。该部分负责数据的发送和接收。(类似人体的四肢

截取了中文手册有关USART的一幅时序图,如下:

时序图1

首先解释一下空闲帧和断开帧:

从图中可以看到,空闲帧包括了停止位。而断开帧是10位低电平,后跟停止位(当m=0时);或者11位低电平,后跟停止位(m=1时)。不可能传输更长的断开帧(长度大于10或者11位)。

发送流程:

  1. 引脚处于空闲状态时,一般是高电平状态。发送使能位被使能:USART_CR1.TE[3] 位被置为1。

  2. (由用户)数据写到发送数据寄存器。在写之前,用户会等待 USART_SR.TXE[7] 被硬件置位,只有该位被置为才说明发送数据寄存器为空,此时写入数据就是安全的,不会造成覆盖的问题。

  3. (以下步骤都是由硬件完成)将发送数据寄存器的内容移到发送移位寄存器,同时将USART_SR.TXE[7] 置位。以示发送数据寄存器为空。

  4. 发送一个起始位。(低电平)

  5. 从最低位开始,左移位将发送移位寄存器的值按位发送到TX引脚(对发送方)。

  6. 如果用户使能了 USART_CR1.PCE[10] ,会根据 USART_CR1.PS[9] 发送一个校验位。

  7. 最后,根据 USART_CR2.STOP[13:12] 的配置发送若干个停止位。(高电平)

  8. 将状态寄存器 USART_SR.TC[6] 置位,表示数据的一帧发送完成。

接收流程:

  1. 接收使能位被使能:USART_CR1.RE[2]

  2. (以下未特别说明,都是由硬件完成)从RX引脚(对接收方)检测到起始位,接收移位寄存器准备接收数据。

  3. 接收移位寄存器从最高位开始,左移位依次按位从RX引脚(对接收方)接收数据。

  4. 接收到停止位。

  5. 如果使能了校验位的话,根据配置进行数据校验。

  6. 校验合格的话,就将接收移位寄存器的值移到接收数据寄存器。

  7. USART_SR.RXNE[5] 置位,表示接收数据寄存器非空,提醒用户接收到数据了。

  8. (由用户)读取接收数据寄存器的数据。

注意:

  • 虽然用户可以操作的寄存器只有一个USART_DR,但是实际上发送和接收数据寄存器在硬件上是各自一个!这样的设计也是双缓冲的实践。

  • 在发送和接收数据之前,用户必须统一设置两端的波特率、校验方式、停止位的数量、字长。否则这四项数据不一致,一定会造成传输错误,导致传输无法进行。其原因从上面的传输流程很容易推断。

有关状态寄存器的位的解释如下:

状态寄存器图1

状态寄存器图2

上面对过载错误位做了一个特写。这是因为我再编码的过程中遇到的一个BUG。排查了半天,原因是当RXNEIE接收中断位使能时,发送方的ORE标志位和RXNE标志位的置位都会触发RXNE事件的中断,当中断处理函数在处理完毕后,只复位RXNE标志,而不管ORE,后续还是会不断的产生中断。所以根据手册(手册其实是有误的),我们需要先读USART_SR,在读USART_DR将ORE标志位清除。(注意!库函数Clear类函数不能清楚ORE位!),这

这里放一张中断请求对应的事件表:

中断事件表

第二部分

对于图248的2号矩形框部分。该部分负责接收和发送的控制,(类似人体大脑。

图中可以看到有很多的控制器、控制寄存器、标志寄存器等。我们可以设置相应的寄存器从而控制收发来实现一些功能。具体寄存器的功能可以参考中文手册,这里不过多赘述。

第三部分

对于图248的3号矩形框部分。该部分负责控制接收和发送的时钟。接收和发送的时钟也称之为波特率,通过波特率,通信双方就能协调其收发的频率(类似人体心脏。

从图248的3号矩形框部分,可知,发送和接受器时钟是相等的。而时钟最开始是来自F_PCLK,送和接受器的时钟是对F_PCLK进行了一个 (16 * USARTDIV) 分频,USARTDIV是一个可调的定点小数。

波特率生成

波特率寄存器

这里解释一下中文手册里面“如何从USART_BRR寄存器值得到USARTDIV”的示例一。 最开始看到这个例子我也是很懵的,什么是定点小数?这是怎么用整数来表示小数的?为什么 <Fraction (USARTDIV) = 12/16 = 0.75> 这里要除以16?原理是这样的:

USART_BRR寄存器里面按定点小数的方式存放USARTDIV的值。只使用了16位,高12位存放小数的整数部分,低4位存放的是小数部分。整数部分很好说,直接存放进去就好了。而小数部分呢,因为小数部分一定是小于1的,所以,它根据低4位所能代表的值,将1划分成了2^4份,也就是16份,每一份占1/16,所以我们要将小数部分表示成4位整数就将小数乘以16并向上取整即可。溢出的话就向整数部分进一。反之,要从4位整数还原小数,就用4位整数乘以1/16。

中文手册总结了一个公式:

波特率 = F_PCLK / (16 * USARTDIV)

通信必须维持相同的波特率。双方各自通过调节USARTDIV,就可以在不同环境下将双方但的波特率调成一样的。

此外,还应该说明的是,公式中,有一个乘以 1 / 16 的操作,这么做的目的是发送接收控制器里面有一个比波特率大16倍的采样频率。采样频率起到很好的滤波效果,它会对每一位进行16次采样。采样对于起始位的探测非常的精妙。并且,对于数据位,中间的8、9、10次采样会起到决定性作用。

起始位探测:

起始帧探测

首先,我们称对第3、5、7次的采样为第一阶段采样,对第8、9、10次的采样为第二阶段采样。

  1. 如果该序列不完整,那么接收端将退出起始位侦测并回到空闲状态(不设置标志位)等待下降沿。

  2. 两个阶段检测的全是0,则确认收到起始位,这时设置RXNE标志位,如果RXNEIE=1,则产生中断。

  3. 如果两阶段中3个采样点上仅有2个是0,那么起始位仍然是有效的,但是会设置NE噪声标志位。如果不能满足这个条件,则中止起始位的侦测过程,接收器会回到空闲状态(不设置标志位)。

  4. 如果两个阶段只有一个阶段中3个采样点上仅有2个是’0’,那么起始位仍然是有效的,但是会设置NE噪声标志位。

数据位噪声探测:

数据采样

对数据位的采样只有一个阶段采样有效,即8、9、10次采样。

上方图片的下面的表格已经规定了采样的值和有效性的映射。读者可以好好的品味一下。

最后,注意因为定点数表示小数是有精度的,所以波特率的计算是存在误差的,具体误差可以查阅中文手册。此外通过中文手册可知F_PCLK有两种情况:

  • PCLK1用于USART2、3、4、5。

  • PCLK2用于USART1

USART发送和接收的配置步骤

USART的配置步骤比较简单。

  1. 通信双方确定好波特率、停止位数、校验方式、字长。

  2. 通过 USART_SR.RXNE[5] 产生的中断(接收数据寄存器非空),去异步接收数据。

  3. 通过直接读写USART_DR寄存器可以实现数据的接收和发送。

  4. 需要的话,可以等待 USART_SR.TC[6] 被硬件置位,来确保发送完成。

  5. 处理中断后,一定要注意彻底清除中断相应的标志位!防止中断假触发!

USART发送和接收的代码

我的开发板硬件连接图如下,所以本实验使用USART1进行串口通信。

硬件图

并且,将PA9、PA10分别配置成推挽复用输出、浮空输入或带上拉输入。

IO复用

GPIO的配置

代码如下:

int fputc(int ch,FILE *p) {//函数默认的,在使用printf函数时自动调用
	USART_SendData(USART1,(u8)ch);	
	while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);
	return ch;
}

void LunarNVICInit(){
	NVIC_InitTypeDef NVIC_Cfg;
	// 配置系统中断分组
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	// CPU上开启USART的中断
	NVIC_Cfg.NVIC_IRQChannel = USART1_IRQn;
	NVIC_Cfg.NVIC_IRQChannelCmd = ENABLE;
	NVIC_Cfg.NVIC_IRQChannelPreemptionPriority = 2;
	NVIC_Cfg.NVIC_IRQChannelSubPriority = 2;

	NVIC_Init(&NVIC_Cfg);

}

void LunarInitUSART1() {
	GPIO_InitTypeDef GPIOA9_Cfg, GPIOA10_Cfg;
	USART_InitTypeDef USART1_Cfg;

	// PA
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);

	// 初始化GPIOA9为复用 (发送
	GPIOA9_Cfg.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIOA9_Cfg.GPIO_Pin = GPIO_Pin_9;
	GPIOA9_Cfg.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIOA9_Cfg);

	// 初始化GPIOA10为复用 (接收
	GPIOA10_Cfg.GPIO_Mode = GPIO_Mode_IN_FLOATING;
	GPIOA10_Cfg.GPIO_Pin = GPIO_Pin_10;
	GPIO_Init(GPIOA, &GPIOA10_Cfg);

	// USART1
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);

	USART1_Cfg.USART_BaudRate = 115200;
	USART1_Cfg.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
	USART1_Cfg.USART_Parity = USART_Parity_No;
	USART1_Cfg.USART_StopBits = USART_StopBits_1;
	USART1_Cfg.USART_WordLength = USART_WordLength_8b;
	USART1_Cfg.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	USART_Init(USART1, &USART1_Cfg);

	// 接收中断
	USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);

	// 打开usart
	USART_Cmd(USART1, ENABLE);
}

// 中断处理程序
void USART1_IRQHandler(void) {
	if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) {	// 接收数据中断
		uint16_t data = USART_ReceiveData(USART1);

		USART_SendData(USART1, data);

		while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
		
		USART_ClearFlag(USART1, USART_FLAG_TXE);
		
	} else {
		// 其他中断不做处理
	}
	
	// 顺序去读SR和DR清楚ORE位
   if (USART_GetFlagStatus(USART1, USART_FLAG_ORE) != RESET){
		USART_ReceiveData(USART1);
		// USART_ClearFlag(USART1, USART_FLAG_ORE); // 函数USART_ClearFlag清楚不了USART_FLAG_ORE!!!
   }
}
 
 int main() {
	// 初始化usart
	LunarInitUSART1();

	LunarNVICInit();
	printf("stm32 启动\n");
	while(1) {

	}

	return 0;
 }

实验结果就是上位机通过给串口发送字符串,上位机接收框出现回显的效果。


本章完结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/603082.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【小迪安全2023】第61天:服务攻防-中间件安全CVE复现K8sDockeruettyWebsphere

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收…

不要和别人比,要和自己的过去比!才会有进步!

现在的人都喜欢拿自己去和别人比较&#xff0c;当然是和比你混得好的人比&#xff0c;比你弱的你也不会去比。比如这个朋友又换了一辆车&#xff0c;那个朋友又买了一套房&#xff0c;另一个朋友又加薪了等等&#xff0c;比来比去总觉得比不上别人。这样比较对自己很不好&#…

【C语言视角】数据结构之~二叉树

前言&#xff1a;总所周知~数据结构的二叉树对于初学者来说是一个十分难理解的知识点。接下来&#xff0c;请阅读本人对二叉树拙劣的理解~ 目录 1.二叉树概念及结构 和性质 二叉树的结构 二叉树的存储结构 2.二叉树顺序结构 3.二叉树链式结构的实现 二叉树层序遍历 1.二叉树…

指定地区|CSC高级研究学者赴澳大利亚访学交流

CSC高级研究学者均是正高或博导级的&#xff0c;学术背景较强&#xff0c;多数能DIY联系到国外合作机构。但也有些申请者因指定地域或学校&#xff0c;或须在短期内获取邀请函故而求助于我们。本案例D教授就指定澳大利亚的墨尔本地区&#xff0c;我们最终用维多利亚大学的邀请函…

优化理论复习——(四)

无约束优化专题&#xff0c;主要使用了序列无约束极小化方法 无约束优化问题相关解法 最优性条件 互补松弛条件 对于一般约束优化问题&#xff1a; 整理一下就是著名的kkt条件&#xff1a; 这里只需要注意一点&#xff0c;那就是互补松弛条件只对不等式约束有限制。 然后是…

Metasploit Framework(MSF)从入门到实战(二)

Metasploit Framework&#xff08;MSF&#xff09;从入门到实战&#xff08;一&#xff09;_安装msf更新-CSDN博客 MSF模块介绍 MSF有7个模块&#xff0c;分别对下面目录下的7个子文件夹&#xff1a; auxiliary&#xff08;辅助模块 &#xff09; show auxiliary //查看所有…

Apache DolphinScheduler 4月简报:社区发展与技术革新速递

各位热爱 DolphinScheduler 的小伙伴们&#xff0c;4 月份的 DolphinScheduler 社区月报更新啦&#xff01;这里将记录 DolphinScheduler 社区每月的重要更新&#xff0c;欢迎关注&#xff01; 月度 Merge 之星 感谢以下小伙伴 4 月为 Apache DolphinScheduler 所做的精彩贡献…

【话题】如何看待AI技术,以及AI技术的发展现状和未来趋势

大家好&#xff0c;我是全栈小5&#xff0c;欢迎阅读小5的系列文章&#xff0c;这是《话题》系列文章 目录 背景一、引言二、AIGC技术的发展现状2.1、技术突破与成果2.2、应用领域的拓展2.3、市场规模的增长 三、AIGC技术的未来趋势3.1、技术融合与创新3.2、应用领域的深化3.3、…

【优选算法】——Leetcode——LCR 179. 查找总价格为目标值的两个商品

1.题目 2. 解法⼀&#xff08;暴⼒解法&#xff0c;会超时&#xff09;&#xff1a; 1.算法思路&#xff1a; 2.图解 3. 代码实现 3. 解法⼆&#xff08;双指针-对撞指针&#xff09;&#xff1a; 1.算法思路&#xff1a; 2.图解 3.代码实现 1.C语言 2…

【4089】基于小程序实现的互动打卡系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…

数智结合,智慧合同让法务管理发挥内在价值

在当今这个信息化、数字化飞速发展的时代&#xff0c;数据已成为企业重要的战略资源。法务管理作为企业内部控制和风险防范的重要环节&#xff0c;其重要性不言而喻。然而&#xff0c;传统的法务管理模式往往存在效率低下、信息孤岛、反应迟缓等问题。在这样的背景下&#xff0…

【Ubuntu】Ubuntu删除文件夹和文件的命令

Ubuntu删除文件夹和文件的命令 rm -rf将文件夹下所有的内容都可以删除了

el-carousel走马灯页数回到第一页

我的走马灯是在一个弹窗里,包裹着一些button,切换到下一页时 关闭弹窗再打开弹窗还显示的是上次第二页位置 领导很不满意 1. 2.写在你打开弹窗或者关闭弹窗的位置 this.$refs.carousel && (this.$refs.carousel.activeIndex 0); 解释一下: this.$refs.carousel: thi…

电脑提示‘找不到msvcr110dll,无法继续执行代码’的解决方法,3分钟快速修复

不知道大家有没有遇到过这种情况&#xff0c;无端端电脑提示你找不到msvcr110dll,无法继续执行代码&#xff1f;当出现这个情况&#xff0c;证明你的某个程序就已经运行不了&#xff0c;你需要去修复这个错误&#xff0c;才能正常的运行程序&#xff0c;下面我们一起来详细的了…

纯血鸿蒙APP实战开发——Canvas实现模拟时钟案例

介绍 本示例介绍利用Canvas 和定时器实现模拟时钟场景&#xff0c;该案例多用于用户需要显示自定义模拟时钟的场景。 效果图预览 使用说明 无需任何操作&#xff0c;进入本案例页面后&#xff0c;所见即模拟时钟的展示。 实现思路 本例的的主要实现思路如下&#xff1a; …

Axure RP 9:卓越的交互式产品原型设计工具

Axure RP 9&#xff0c;作为一款备受欢迎的交互式产品原型设计工具&#xff0c;已经在全球范围内赢得了众多设计师和开发者的青睐。这款软件凭借其强大的功能和出色的用户体验&#xff0c;成为了产品原型设计领域的佼佼者。 Axure RP 9支持Mac和Windows两大操作系统&#xff0…

学会这些pytest-Allure常用特性allure.attach、allure.step、fixture、environment、categories

allure.attach allure.attach用于在测试报告中添加附件&#xff0c;补充测试结果。附件格式可以是txt、jpg等&#xff0c;附件内容通常是测试数据、截图等。 allure.attach提供了两种方法&#xff1a;allure.attach()&#xff0c;allure.attach.file() allure.attach() 作用…

flutter自定义日期选择器按日、按月、自定义开始、结束时间

导入包flutter_datetime_picker: 1.5.0 封装 import package:atui/jade/utils/JadeColors.dart; import package:flutter/cupertino.dart; import package:flutter/material.dart; import package:flutter_datetime_picker/flutter_datetime_picker.dart; import package:flut…

从开发角度理解漏洞成因(03)

文章目录 JS前端验证 - 文件上传设计浏览器禁用JS&#xff0c;前端绕过文件上传漏洞验证漏洞 Ajax 登录验证&#xff0c;状态回显&#xff0c;状态码设计修改返回包绕过登录验证 通过Ajax 传递数据进行购物验证设计1此漏洞也可以修改状态码绕过 持续更新中… 文章中代码资源已上…

运维自动化工具:Ansible 概念与模块详解

目录 前言 一、运维自动化工具有哪些 二、Ansible 概述 1、Ansible 概念 2、Ansible 特点 3、Ansible 工作流程 4、Ansible 架构 4.1 Ansible 组成 4.2 Ansible 命令执行来源 5、Ansible 的优缺点 三、Ansible 安装部署 1、环境部署 2、管理节点安装 Ansible 3、…