Spark核心概念
名词解释
1)ClusterManager:在Standalone(上述安装的模式,也就是依托于spark集群本身)模式中即为Master(主节点),控制整个集群,监控Worker。在YARN模式中为资源管理器ResourceManager(国内spark主要基于yarn集群运行,欧美主要基于mesos来运行)。
2)Application:Spark的应用程序,包含一个Driver program和若干Executor。
3)SparkConf:负责存储配置信息。作用相当于hadoop中的Configuration。
4)SparkContext:Spark应用程序的入口,负责调度各个运算资源,协调各个Worker Node上的Executor。
5)Worker:从节点,负责控制计算节点,启动Executor。在YARN模式中为NodeManager,负责计算节点的控制,启动的进程叫Container。
6)Driver:运行Application的main()函数并创建SparkContext(是spark中最重要的一个概念,是spark编程的入口,作用相当于mr中的Job)。
7)Executor:执行器,在worker node上执行任务的组件、用于启动线程池运行任务。每个Application拥有独立的一组Executors。
8)RDD:Spark的基本计算单元,一组RDD可形成执行的有向无环图RDD Graph。
9)RDD是弹性式分布式数据集,理解从3个方面去说:弹性、数据集、分布式。是Spark的第一代的编程模型。
10)DAGScheduler:实现将Spark作业分解成一到多个Stage,每个Stage根据RDD的Partition个数决定Task的个数,然后生成相应的Taskset放到TaskScheduler中。DAGScheduler就是Spark的大脑,中枢神经。
11)TaskScheduler:将任务(Task)分发给Executor执行。
12)Stage:一个Spark作业一般包含一到多个Stage。
13)Task:一个Stage包含一到多个Task,通过多个Task实现并行运行的功能。task的个数由rdd的partition分区决定,spark是一个分布式计算程序,所以一个大的计算任务,就会被拆分成多个小的部分,同时进行计算。一个partition对应一个task任务。
14)Transformations:转换(Transformations) (如:map, filter, groupBy, join等),Transformations操作是Lazy的,也就是说从一个RDD转换生成另一个RDD的操作不是马上执行,Spark在遇到Transformations操作时只会记录需要这样的操作,并不会去执行,需要等到有Actions操作的时候才会真正启动计算过程进行计算。
15)Actions:操作/行动(Actions)算子 (如:count, collect, foreach等),Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。
Spark官网组件说明
官网组件说明如图-1所示:
图-1 Spark组件通信架构图
Spark应用程序作为集群上的独立进程集运行,由主程序(称为驱动程序)中的SparkContext对象协调。
具体来说,要在集群上运行,SparkContext可以连接到几种类型的集群管理器(Spark自己的独立集群管理器、Mesos或YARN),这些管理器可以跨应用程序分配资源。一旦连接,Spark将获取集群中节点上的执行器,这些执行器是为应用程序运行计算和存储数据的进程。接下来,它将应用程序代码(由传递给SparkContext的JAR或Python文件定义)发送给执行器。最后,SparkContext将任务发送给执行器以运行。