基础算法,贪心算法,贪心策略,OJ练习

文章目录

    • 一、概念
    • 二、OJ练习
      • 2.1 区间选点
      • 2.2 区间合并
      • 2.3 区间
      • 2.4 合并果子
      • 2.5 排队接水
      • 2.6 货仓选址
      • 2.7 防晒
      • 2.8 畜栏预定
      • 2.9 雷达设备
      • 2.10 国王游戏
      • 2.11 耍杂技的牛
      • 2.12 给树染色
      • 2.13 任务
      • 2.14 能量石
    • 三、总结


一、概念

贪心是一种在每次决策时采取当前意义下最优策略的算法,因此,使用贪心法要求问题的整体最优性可以由局部最优性导出。贪心算法的正确性需要证明,常见的证明手段有:

  1. 微扰(邻项交换)
    1. 证明在任意局面下,任何对局部最优策略的微小改变都会造成整体结果变差。经常用于以“排序”为贪心策略的证明。
  2. 范围缩放
    1. 证明任何对局部最优策略作用范围的扩展都不会造成整体结果变差
  3. 决策包容性
    1. 证明在任意局面下,作出局部最优决策以后,在问题状态空间中的可达集合包含了作出其他任何决策后的可达集合。换言之,这个局部最优策略提供的可能性包含其他所有策略提供的可能性。
  4. 反证法
  5. 数学归纳法

贪心算法在算法体系中较为特殊,这里通过几道例题来体会贪心算法的应用。

二、OJ练习

2.1 区间选点

区间选点 - 45D - Codeforces

题目保证了有解,我们该如何选出可行解呢?

我们考虑把区间按照右端点升序排序,然后遍历所有区间,对于每个区间选取区间内没有被选取的最左端点

如何证明正确性?——反证法

假设按照上述策略出现某个区间无点可选,该区间为[l, r],说明有r - l + 1个右端点不小于l,不超过r的区间选择了[l, r]内的r - l + 1个点

它们选择[l, r]内的点说明它们在[0, l - 1]的部分都被选完了,否则按照靠左原则应该选取[0, l - 1]的点,那么[l, r]内就存在r - l + 2个区间的右端点,此时原问题无解,与题目条件矛盾,故策略正确。

对于区间问题通用操作是按照某端点排序,在处理区间问题没有头绪的时候可以试着排序来寻找突破口。

n = int(input())

lines = []

for _ in range(n):
    a, b = map(int, input().split())
    lines.append((a, b, _))
lines.sort(key=lambda x: x[1])

st = set()
ans = [0] * n
for l, r, idx in lines:
    for i in range(l, r + 1):
        if not (i in st):
            st.add(i)
            ans[idx] = i
            break

for x in ans:
    print(x, end=' ')

2.2 区间合并

P2082 区间覆盖(加强版) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

即求区间合并后的长度

那么我们将区间按照左端点升序排序,然后顺序遍历区间

记录当前合并区间的左端点L,右端点R,对于遍历到的区间[l, r]

如果l > R,那么说明和前面的区间不相交,我们累加前面区间的长度后更新当前合并区间为[l, r]

否则,更新R = max(R, r)

证明很简单,就是假设存在两个可以合并的区间没有合并,然后反证推出矛盾即可,不再赘述。

n = int(input())
lines = [tuple(map(int, input().split())) for _ in range(n)]
lines.sort(key=lambda x: x[0])

res = 0
L, R = 0, -1
for x, y in lines:
    if x <= R:
        R = max(R, y)
    else:
        res += R - L + 1
        L, R = x, y
print(res + (R - L + 1))

2.3 区间

[P2434 SDOI2005] 区间 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

和上一道题做法一样,是在上一道题目的基础上加上了输出具体方案

我们只需开一个数组表示当前的不合并区间数组,如果当前区间和最后一个不相交就加入数组,否则就维护最后一个区间的最右端点

n = int(input())
lines = [tuple(map(int, input().split())) for _ in range(n)]
lines.sort(key=lambda x: x[0])

res = 0
ans = [lines[0]]
for x, y in lines:
    if x <= ans[-1][1]:
        ans[-1] = (ans[-1][0], max(ans[-1][1], y))
    else:
        ans.append((x, y))
for x, y in ans:
    print(x, y)

2.4 合并果子

148. 合并果子 - AcWing题库

很明显的贪心思路,每次区所有堆中最小的两堆合并即可

为什么是正确的呢?

我们合并的过程其实可以构造出一棵树,这棵树和Huffman树其实是等价的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

上图中蓝色代表初始的果子堆,每个结点都是由两个孩子合并而来

初始蓝色结点的贡献为深度 乘 结点权值

我们只需证明按照贪心策略得到的树中:蓝色结点的权值 * 深度之和最小即可

引理:权值最小的两个点的深度一定最深,且互为兄弟

证明:如果不是,两个点中至少有一个可以和最后一层的某个权值不小于自身的结点交换,那么两个结点可以交换到最后一层并且成为兄弟,那么 蓝色结点的权值 * 深度之和至少不会变大,甚至变小,故得证

那么最优解的值等价于 权值最小的两个点的值相加 加上 两个点合并后与剩余的n - 2个点构造出的最优树的值

同样的,我们如此迭代下去,可以构造出一棵最优解树,故得证。

import heapq
n = int(input())
a = list(map(int, input().split()))
heapq.heapify(a)
res = 0
while len(a) > 1:
    x = heapq.heappop(a)
    y = heapq.heappop(a)
    res += x + y
    heapq.heappush(a, x + y)
print(res)

2.5 排队接水

P1223 排队接水 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

每个人接的越早,它的时间就会越多人忍受

所以我们让接的少的人优先接水即可

证明也很简单,同样反证,然后总可以按照贪心策略构造出不比最优解差甚至更优的解

n = int(input())
a = [(int(x), _ + 1) for _, x in enumerate(input().split())]
a.sort()
s = 0
for i, (x, idx) in enumerate(a):
    s += x * (n - i - 1)
    print(idx, end=' ')
print('')
print('%.2f' % (s / n))

2.6 货仓选址

104. 货仓选址 - AcWing题库

很经典的中位数问题,就是数轴上找到一个点y使得,Σ|x - y|最小

img

上图其实已经很明白了,当y选在两个数里面的差绝对值和总小于等于在两个数外面的差绝对值

那么我们剥洋葱似的一层一层往里钻,就会落到中位数处

n = int(input())
a = list(map(int, input().split()))
a.sort()

mid = a[len(a) // 2]

print(sum(abs(x - mid) for x in a))

2.7 防晒

110. 防晒 - AcWing题库

又是区间问题,不过这道题按照左右端点哪个排都能做,其实有点让每个资源发挥其最大作用的意思

怎么思考呢?我们把牛牛的区间按照右端点排序,然后顺序遍历牛牛每次选取在自己区间内最小的那个防晒霜

如何证明我们这样得到的一定是最优解?

我们可以证明对任意最优解按照贪心策略调整不会使得解变差从而得到一个最优解,我们也可以用范围缩放来证明,即我们的局部最优贪心策略对整体影响最小。

我们已经按照右端点排序,那么对于当前枚举奶牛的可用防晒霜x,y,SPF[x] < SPF[y]只有如下三种情况:

  • 后面奶牛x,y都能用
  • 后面奶牛只能用y
  • 后面奶牛x,y都不能用

我们发现我们选择x对后面奶牛影响最小,所以贪心策略正确。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
#define x first
#define y second
typedef pair<int, int> PII;
const int N = 2510;

int n, m;
PII w[N];
map<int, int> mp;

int main(){
    cin >> n >> m;
    for(int i = 0; i < n; i ++) cin >> w[i].x >> w[i].y;
    for(int i = 0, a, b; i < m; i ++) cin >> a >> b, mp[a] += b;
    
    sort(w, w + n, [](const PII& a, const PII& b){
        return a.y < b.y;
    });
    
    int res = 0;
    
    for(int i = 0; i < n; i ++){ //cout << w[i].x << ' ' << w[i].y << endl;
        auto it = mp.lower_bound(w[i].x);
        if (it != mp.end() && it -> first <= w[i].y) {
            it -> second --, res ++;
            if(! it -> second) mp.erase(it);
        }
    }
    cout << res;
    return 0;
}

2.8 畜栏预定

111. 畜栏预定 - AcWing题库

我们将牛按开始时间升序排序,然后枚举牛

如果对于当前牛有可以安排的畜栏(畜栏内最后一头牛结束时间不晚于当前牛的开始时间),那么我们就安排进去

如果没有,就新开一个畜栏

上述做法的正确性:

反证法:我们存在不同于上述策略的方案为更优解,只需m个畜栏,那么我们上述策略建立第m + 1个畜栏时,必然有m个畜栏的结束时间都大于当前牛的开始时间,而由于我们按照开始时间升序,故m个畜栏的最后一头牛都和当前牛区间有交集,等价于m + 1头牛两两有交集,所以我们至少需要m + 1个畜栏,矛盾,故得证。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define x first
#define y second
const int N = 5e4 + 10;
typedef pair<int, int> PII;
typedef pair<PII, int> PIII;
PIII lines[N];
int n, id[N];
priority_queue<PII, vector<PII>, greater<PII>> pq;
int main(){
    cin >> n;
    for(int i = 0, a, b; i < n; i ++) cin >> a >> b, lines[i] = { {a, b}, i };
    sort(lines, lines + n);
    for(int i = 0; i < n; i ++){
        if(pq.empty() || pq.top().x >= lines[i].x.x)
            pq.emplace(lines[i].x.y, id[lines[i].y] = pq.size() + 1);
        else{
            PII t = pq.top();
            pq.pop();
            t.x = lines[i].x.y;
            pq.emplace(t);
            id[lines[i].y] = t.y;
        }
    }
    cout << pq.size() << endl;
    for(int i = 0; i < n; i ++) cout << id[i] << endl;
    return 0;
}

2.9 雷达设备

112. 雷达设备 - AcWing题库

对于每个小岛而言,可以覆盖它的点对应x轴上一个区间,那么每个小岛就能够有一个可监测区间

我们只需选择尽可能少的点使得每个区间都被覆盖到即可,这就转化为了区间选点问题

我们将区间按照右端点排序,然后如果当前区间左端点小于覆盖区间的右端点,说明该区间可以被前面覆盖区间的点

否则我们就开一个新区间,所选的点为当前区间的右端点

from math import sqrt
n, d = map(int, input().split())
eps = 1e-6
lines = []
for _ in range(n):
   x, y = map(int, input().split())
   if y - d > eps:
       print(-1)
       exit(0)
   dx = sqrt(d * d - y * y)
   lines.append((x - dx, x + dx))

lines.sort(key=lambda x: x[1])
ed = -2000
res = 0
for l, r in lines:
    if l - ed > eps:
        res += 1
        ed = r
print(res)

2.10 国王游戏

114. 国王游戏 - AcWing题库

本题贪心策略为:将大臣按照左手乘右手升序排序,此时的最大值最小

证明策略:临项交换(微扰)

我们假设最优解不是按照上述策略得到,那么一定存在a[i] * b[i] >= a[i + 1] * b[i + 1]

交换二者不影响其他大臣的收益

我们对比交换前后二者的收益:

交换前:i人:premul(i - 1) / bi i + 1人:premul(i - 1) * ai / bi+1

交换后:i人:premul(i - 1) / bi+1 i + 1人:premul(i - 1) * ai+1 / bi

四个数同乘 bi*bi+1/premul(i - 1):

交换前:i人:bi+1 i + 1人:ai bi

交换后:i人:bi i + 1人:ai+1 bi+1

由于ai * bi >= ai+1*bi+1,ai bi >= bi,则交换后整体的最大值没有变大,甚至变小

那么我们交换所有逆序对可以得到不比最优解差的解,故我们的贪心策略正确。

cpp要手写高精度

#include <iostream>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
typedef pair<int, int> PII;
const int N = 1005;

vector<int> mul(vector<int>& a, int x){
    int n = a.size(), t = 0;
    vector<int> ret;
    for(int i = 0; i < n; i ++){
        t += a[i] * x;
        ret.push_back(t % 10);
        t /= 10;
    }
    while(t) ret.push_back(t % 10), t /= 10;
    return ret;
}

vector<int> div(vector<int>& a, int x){
    int n = a.size(), t = 0;
    vector<int> ret;
    for(int i = n - 1; ~i; i --){
        t = t * 10 + a[i];
        ret.push_back(t / x);
        t %= x;
    }
    reverse(ret.begin(), ret.end());
    while(ret.size() && !ret.back()) ret.pop_back();
    return ret;
}
vector<int> ma(const vector<int>& a, const vector<int>& b){
    if(a.size() > b.size()) return a;
    if(a.size() < b.size()) return b;
    if(vector<int>(a.rbegin(), a.rend()) > vector<int>(b.rbegin(), b.rend())) return a;
    return b;
}
int n;
PII w[N];

int main(){
    cin >> n, n ++;
    for(int i = 0, a, b; i < n; i ++) cin >> a >> b, w[i] = { a, b };
    sort(w + 1, w + n, [](const PII& a, const PII& b){
        return a.first * a.second < b.first * b.second;
    });
    vector<int> cur(1, 1), res(1, 0);
    for(int i = 0; i < n; i ++){ 
        if(i)
            res = ma(res, div(cur, w[i].second));
        cur = mul(cur, w[i].first);
        /*for(int x : vector<int>(cur.rbegin(), cur.rend()))
        cout << x;
        puts("");*/
    } 
    for(int x : vector<int>(res.rbegin(), res.rend()))
        cout << x;
    return 0;
}

不想写高精度就用python3

n = int(input())
n += 1
w = [tuple(map(int, input().split())) for _ in range(n)]
cur ,res = w[0][0], 0
for a, b in sorted(w[1::], key=lambda x:x[0]*x[1]):
    res = max(res, cur // b)
    cur *= a
print(res)

2.11 耍杂技的牛

125. 耍杂技的牛 - AcWing题库

和上一题很像,这题按照w + s升序排序

和上一题同样的证明思路,不再赘述

n = int(input())
ws = [tuple(map(int, input().split())) for _ in range(n)]
pre = 0
ans = -1e18
for w, s in sorted(ws, key=lambda x:x[0]+x[1]):
    ans = max(ans, pre - s)
    pre += w
print(ans)

2.12 给树染色

115. 给树染色 - AcWing题库

错误的贪心:从根结点开始扩展,每次取当前最小权值的结点

很容易举出反例,可以自己试一下。

我们可以确定的事情是,当前除去根节点的最大权值结点会在其父节点被染色后立即被染色。

那么我们考虑当前最大结点x,父节点y,和任意结点z,染色顺序无非:

x,y,z,代价为x + 2y + 3z

z,x,y,代价为:z + 2x + 3y

二者做差有:2z - (x + y),可见当z大于x+y的平均值时才会先染x+y

那么我们在考虑当前树中剩余结点时,不妨将x,y当成一个结点,其权值为平均权值,然后就有了做法:

选择当前树中的最大权值,进行染色,由于它和父亲染色顺序为一前一后,所以染色后合并到父亲结点后面

我们合并n - 1次就只剩下一个结点,此时整棵树的染色顺序也就知道了

具体实现时,由于我们并不关心具体染色方案,所以为了简便,我们可以在合并时维护答案

考虑x合并到y上,由于要先染色y,所以x的权值要被加上y的sz次(sz为y结点的大小)

可以用并查集+堆优化到O(nlogn),不过这个数据量没必要,重要的还是这道题的思想

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 1005;
const double eps = 1e-6;
struct node{
    int fa, sz, v;
    double avg;
}nodes[N];
int n, root, res;

int nxt()
{
    double avg = 0;
    int res = -1;
    for (int i = 1; i <= n; i ++ )
        if (i != root && nodes[i].avg > avg)
        {
            avg = nodes[i].avg;
            res = i;
        }
    return res;
}

int main(){
    cin >> n >> root;
    for(int i = 1, v; i <= n; i ++){
        cin >> v, res += v;
        nodes[i] = { -1, 1, v, v };
    }
    for(int i = 1, a, b; i < n; i ++){
        cin >> a >> b;
        nodes[b].fa = a;
    }
    for(int i = 1; i < n; i ++){
        int t = nxt(), fa = nodes[t].fa;
        res += nodes[fa].sz * nodes[t].v;
        nodes[t].avg = -1;
        for(int j = 1; j <= n; j ++)
            if(nodes[j].fa == t) nodes[j].fa = fa;
        nodes[fa].sz += nodes[t].sz, nodes[fa].v += nodes[t].v, nodes[fa].avg = (double)nodes[fa].v / nodes[fa].sz;
    }
    cout << res;
    return 0;
}

2.13 任务

127. 任务 - AcWing题库

我们发现式子中x对于利润占主导,所以按x从大到小来进行考虑每个任务。对于每个任务从时间满足的机器中选择等级足够且最小的那个。

具体流程如下:

  • 按照x对任务和机器排序
  • 按x从大到小遍历任务,把时间充足的机器放入集合
  • 如果集合中存在等级足够的机器,那么选择等级最小的那个
  • 再处理下一个任务时,集合中的机器的时间都是足够的,我们只需考虑等级

时间复杂度:O(nlogn + mlogn)

#include <bits/stdc++.h>
using i64 = long long;
using PII = std::pair<int, int>;
const int N = 1e5 + 10, M = 1e5 + 10;
int n, m;
PII a[N], b[M];
int main(){
	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
	while (std::cin >> n >> m){
		for(int i = 0; i < n; i ++) std::cin >> a[i].first >> a[i].second;
		for(int i = 0; i < m; i ++) std::cin >> b[i].first >> b[i].second;
		std::sort(a, a + n), std::sort(b, b + m);
		std::multiset<int> st;
		i64 cnt = 0, res = 0;
		for(int i = m - 1, j = n - 1; ~i; i --){
			while(~j && a[j].first >= b[i].first)
				st.insert(a[j --].second);
			auto it = st.lower_bound(b[i].second);
			if(it != st.end()){
				cnt ++;
				res += 500 * b[i].first + 2 * b[i].second;
				st.erase(it);
			}
		}
		std::cout << cnt << ' ' << res << '\n';
	}

	return 0;
}

2.14 能量石

734. 能量石 - AcWing题库

01背包 + 临项交换

先暴力考虑所有情况,即全排列中依次求01背包

那么最优解是否存在某种特性呢?或者说,我们需要考虑的情况的范围能否缩小?

我们考虑最优解,相邻两个能量石s[i], s[i + 1]

二者的收益为:e’[i] + e’[i + 1] - s[i] * l[i + 1]

交换次序:e’[i] + e’[i + 1] - s[i + 1] * l[i]

由于是最优解,所以交换前的收益不小于交换后的收益:s[i] * l[i + 1] <= s[i + 1] * l[i]

那么说明最优解满足两两之间s[i] * l[i + 1] <= s[i + 1] * l[i]

所以我们将能量石按照s[i] / l[i]升序排序,然后跑01背包即可

#include <bits/stdc++.h>
#define sc scanf
using i64 = long long;
const int N = 105, M = 1e4 + 10;
struct node{
    int s, e, l;
    bool operator<(const node& x) const{
        return s * x.l < x.s * l;
    }
}nodes[N];

int main(){
    int _ = 1;
    std::cin >> _;
    for(int t = 1, n, m; t <= _; t ++){
        std::cin >> n;
        m = 0;
        for(int i = 0, a, b, c; i < n; i ++) std::cin >> a >> b >> c, nodes[i] = { a, b, c }, m += a;
        std::sort(nodes, nodes + n);
        std::vector<i64> f(m + 1, -1e8);
        f[0] = 0;
        for(int i = 0; i < n; i ++){
            auto [s, e, l] = nodes[i];
            for(int j = m; j >= s; j --){
                f[j] = std::max(f[j], f[j - s] + e - (j - s) * l);
            }
        }
        printf("Case #%d: %lld\n", t, *std::max_element(f.begin(), f.end()));
    }
    return 0;
}

三、总结

很想从上面的问题中提取出某些东西,但是发现没有套路可言,只是遇到贪心问题时有了几个贪心的方向,区间类试着按端点排序,贪心构造,临项交换等等,但具体还得多做题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/601438.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

怎么在家访问公司内网?

在当前的疫情情况下&#xff0c;越来越多的公司开始允许员工在家办公&#xff0c;这就需要解决一个问题&#xff1a;如何在家访问公司的内网资源呢&#xff1f;今天我将介绍一种解决方案——使用【天联】组网&#xff0c;它具有许多优势。 【天联】组网的优势 无网络限制&#…

视频断点上传

什么是断点续传 通常视频文件都比较大&#xff0c;所以对于媒资系统上传文件的需求要满足大文件的上传要求。http协议本身对上传文件大小没有限制&#xff0c;但是客户的网络环境质量、电脑硬件环境等参差不齐&#xff0c;如果一个大文件快上传完了网断了没有上传完成&#xf…

泰迪智能科技中职大数据实验室建设(职业院校大数据实验室建设指南)

职校大数据实验室是职校校园文化建设的重要部分&#xff0c;大数据实训室的建设方案应涵盖多个方面&#xff0c;包括硬件设施的配备、软件环境的搭建、课程资源的开发、师资力量的培养以及实践教学体系的完善等。 打造特色&#xff0c;对接生产 社会经济与产业的…

KT148A语音芯片串口版本播放音乐的时候,直接导致单片机工作异常

一、问题描述 在使用你们KT148A串口版本播放音乐的时候&#xff0c;直接导致单片机工作异常&#xff0c;测了一下供电发现每次播放音乐的时候&#xff0c;供电会有很大波动。看了一下你们的手册&#xff0c;说是带载能力不够&#xff0c;但是我把供电接出来&#xff0c;接到你…

【数据结构】二叉树知识点详解

树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合有一个特殊的结点&#xff0c;称为根结点&#xff0c;根节点没有前驱结点除根节点外&#xff0c;其余结点被分成M(M>0)个互不相交的集合T1、T2、…

STM32-DAC

DAC 前言一、理论介绍二、DAC代码三、实验结果总结 前言 前言写个参考吧 STM32 DAC串口 一、理论介绍 DAC是数字模拟转换器&#xff08;Digital to Analog Converter&#xff09;的缩写&#xff0c;它是一种将数字信号转换为模拟信号的设备。 RC有2个通道。 DAC的初始化 #…

Vue3专栏项目 -- 一、第一个页面(上)

一、ColumnList 组件&#xff08;专栏列表组件&#xff09;编码&#xff1a; 该组件要接收一个数组&#xff0c;数组中是一个个专栏数据&#xff0c;数据中包括id、title、avator、description。所以我们定义一个泛型&#xff0c;泛型为id为number类型title为string类型如下这…

【从零开始学架构 架构基础】架构设计的本质、历史背景和目的

本文是《从零开始学架构》的第一篇学习笔记&#xff0c;主要理解架构的设计的本质定义、历史背景以及目的。 架构设计的本质 分别从三组概念的区别来理解架构设计。 系统与子系统 什么是系统&#xff0c;系统泛指由一群有关联的个体组成&#xff0c;根据某种规则运作&#…

VS Code安装通义灵码插件

搜索通义灵码插件 当编写完部分代码后&#xff0c;会出现通义灵码的图标&#xff0c;点击该图标&#xff0c;可以选择补全代码。 之后需要登录阿里云账号 返回vscode 在左下角输入框输入提出的问题“合并两个数组”&#xff0c;回车显示问题的答案。

简单了解泛型

基本数据类型和对应的包装类 在Java中, 基本数据类型不是继承自Object, 为了在泛型代码中可以支持基本类型, Java给每个基本类型都对应了一个包装类型. 简单来说就是让基本数据类型也能面向对象.基本数据类型可以使用很多方法, 这就必须让它变成类. 基本数据类型对定的包装类…

免费思维13招之一:体验型思维

思维01:体验型思维 第一大战略:体验型思维。 体验型思维是免费思维中最简单的思维,我们先从最简单的讲起,由简入繁,简单的我们少讲,复杂的我们多讲。 那么,什么是体验型思维呢? 很简单,就是先让客户进行体验,再进行成交的方式。这一种思维,具体的可以分为两种:…

yolo world 瑞芯微芯片rknn部署、地平线芯片Horizon部署、TensorRT部署

特别说明&#xff1a;参考官方开源的 yoloworld 代码、瑞芯微官方文档、地平线的官方文档&#xff0c;如有侵权告知删&#xff0c;谢谢。 模型和完整仿真测试代码&#xff0c;放在github上参考链接 模型和代码。 yoloworld出来的有一段时间了&#xff0c;还没有盘到板端上玩一玩…

IJCAI 2024:吉林大学、中国科学院计算技术研究所和自动化研究所等揭示数据增强在开放场景下的“两面性”

吉林大学人工智能学院研究员高一星、中国科学院计算技术研究所副研究员唐帆、中国科学院自动化研究所研究员董未名等在人工智能领域的CCF-A类顶级国际会议IJCAI上发表的工作&#xff0c;揭示并分析基于样本混合的数据增强方法在开放场景下存在的问题&#xff0c;提出了基于非对…

《安富莱嵌入式周报》第336期:开源计算器,交流欧姆表,高性能开源BLDC控制器,Matlab2024a,操作系统漏洞排名,微软开源MS-DOS V4.0

周报汇总地址&#xff1a;嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 本周更新一期视频教程&#xff1a; BSP视频教程第30期&#xff1a;UDS ISO14229统一诊断服务CAN总线专题&#xff0c;常…

C++:多态-虚函数

C 中的多态性是面向对象编程中的一个重要概念&#xff0c;它允许在运行时选择不同的函数实现&#xff0c;以适应不同类型的对象。 多态的种类 编译时多态性&#xff08;Compile-time Polymorphism&#xff09;&#xff1a;也称为静态多态性或早期绑定&#xff0c;指在编译时确…

java.lang.Exception: Test class should have exactly one public zero-

1.原因 Test方法所在类中,不能存在有参数构造函数,无参构造可以存在。JUnit在运行测试之前&#xff0c;会对测试类做一些初始化和验证工作。对于普通的非参数化测试&#xff0c;JUnit期望测试类有一个无参的公共构造函数&#xff0c;这样它才能够实例化测试类并执行其中的测试方…

K8S快速入门

K8S快速入门 在学习k8s的过程&#xff0c;虽然官网给出的示例教程很简单&#xff0c;但是由于网络和环境的差异&#xff0c;导致实际操作的时候踩了很多坑&#xff0c;下面记录一下自己的操作步骤&#xff0c;方便需要的人参考&#xff0c;也方便以后的自己。 参考官网的资料…

uni-app+vue3 +uni.connectSocket 使用websocket

前言 最近在uni-appvue3websocket实现聊天功能&#xff0c;在使用websocket还是遇到很多问题 这次因为是app手机应用&#xff0c;就没有使用websocket对象&#xff0c;使用的是uni-app的uni.connectSocket 为了方便测试这次用的是node.js一个简单的dom&#xff0c;来联调模拟…

五分钟解决Springboot整合Mybaties

SpringBoot整合Mybaties 创建maven工程整合mybaties逆向代码生成 创建maven工程 1.通过idea创建maven工程如下图 2.生成的工程如下 以上我们就完成了一个maven工程&#xff0c;接下来我们改造成springboot项目。 这里主要分为三步&#xff1a;添加依赖&#xff0c;增加配置&…

Spring_概述

Spring 官网Spring Framework&#xff08;Spring&#xff09;文档位置重点内容Overview 官网 Spring官网 Spring Framework&#xff08;Spring&#xff09; 文档位置 重点 IoC容器AOP&#xff1a;面向切面编程AOT&#xff1a;ahead of time&#xff0c;提前编译Web 框架&…