使用 GPT-4-turbo+Streamlit+wiki+calculator构建Math Agents应用【Step by Step】

  • 💖 Brief:大家好,我是Zeeland。Tags: 大模型创业、LangChain Top Contributor、算法工程师、Promptulate founder、Python开发者。
  • 📝 CSDN主页:Zeeland🔥
  • 📣 个人说明书:Zeeland
  • 📣 个人网站:https://me.zeeland.cn/
  • 📚 Github主页: Undertone0809 (Zeeland)
  • 🎉 支持我:点赞👍+收藏⭐️+留言📝 我会定期在博客、个人说明书、论坛中做一些技术分享。也欢迎大家阅读我的个人说明书,大家可以在这里快速了解我和我做过的事情,期待和你交个朋友,有机会我们一起做一些有意思的事情

Introduction

本文将介绍GPT-4-turbo+Streamlit+wiki+calculator+Promptulate构建Math Agents应用,使用 Agent 进行推理,解决数学问题。

如果你想直接获取代码,可以从https://github.com/Undertone0809/promptulate/tree/main/example/build-math-application-with-agent 获取。

也可以点击https://github.com/Undertone0809/promptulate/fork fork 更多 examples 到自己的仓库里学习。

Summary

本文详细介绍了如何结合GPT-4-turbo、Streamlit、Wikipedia API、计算器功能以及Promptulate框架,构建一个名为“Math Wiz”的数学辅助应用。这个应用旨在帮助用户解决数学问题或逻辑/推理问题。通过这个项目,我们展示了如何利用Promptulate框架中的Agent进行推理,以及如何使用不同的工具来处理用户的查询。

关键步骤总结:

  • 环境搭建:创建了一个新的conda环境,并安装了所有必要的库,包括Promptulate、Wikipedia和numexpr。
  • 应用流程:设计了一个应用流程,其中包含了一个能够利用不同工具(如Wikipedia工具、计算器工具和推理工具)来回答用户查询的Agent。这个Agent使用大型语言模型(LLM)作为其“大脑”,指导它的决策。
  • 理解Promptulate Agent:介绍了Promptulate Agent的概念,这是一个设计用来与语言模型进行更复杂和交互式任务的接口。

逐步实现:

  • 创建了chatbot.py脚本并导入了必要的依赖。
  • 定义了基于OpenAI的语言模型。
  • 创建了三个工具:Wikipedia工具、计算器工具和推理工具。
  • 初始化了Agent,并指定了LLM来帮助它选择使用哪些工具及其顺序。
  • 创建Streamlit应用:使用Streamlit框架来构建应用的前端界面,允许用户输入问题并接收Agent的回答。

测试案例:

  • 通过几个测试案例,展示了“Math Wiz”应用如何处理不同类型的数学和逻辑问题,包括算术运算、历史事实查询和逻辑推理等。

Building a Math Application with promptulate Agents

This demo is how to use promptulates agents to create a custom Math application utilising OpenAI’s GPT3.5 Model.
For the application frontend, there will be using streamlit, an easy-to-use open-source Python framework.
This generative math application, let’s call it “Math Wiz”, is designed to help users with their math or reasoning/logic questions.

Environment Setup

We can start off by creating a new conda environment with python=3.11:conda create -n math_assistant python=3.11

Activate the environment:conda activate math_assistant

Next, let’s install all necessary libraries:
pip install -U promptulate
pip install wikipedia
pip install numexpr

Sign up at OpenAI and obtain your own key to start making calls to the gpt model. Once you have the key, create a .env file in your repository and store the OpenAI key:

OPENAI_API_KEY="your_openai_api_key"

Application Flow

The application flow for Math Wiz is outlined in the flowchart below. The agent in our pipeline will have a set of tools at its disposal that it can use to answer a user query. The Large Language Model (LLM) serves as the “brain” of the agent, guiding its decisions. When a user submits a question, the agent uses the LLM to select the most appropriate tool or a combination of tools to provide an answer. If the agent determines it needs multiple tools, it will also specify the order in which the tools are used.

The application flow for Math Wiz is outlined below:

The agent in our pipeline will have a set of tools at its disposal that it can use to answer a user query. The Large Language Model (LLM) serves as the “brain” of the agent, guiding its decisions. When a user submits a question, the agent uses the LLM to select the most appropriate tool or a combination of tools to provide an answer. If the agent determines it needs multiple tools, it will also specify the order in which the tools are used.

The agent for our Math Wiz app will be using the following tools:

  1. Wikipedia Tool: this tool will be responsible for fetching the latest information from Wikipedia using the Wikipedia API. While there are paid tools and APIs available that can be integrated inside Promptulate, I would be using Wikipedia as the app’s online source of information.

  2. Calculator Tool: this tool would be responsible for solving a user’s math queries. This includes anything involving numerical calculations. For example, if a user asks what the square root of 4 is, this tool would be appropriate.

  3. Reasoning Tool: the final tool in our application setup would be a reasoning tool, responsible for tackling logical/reasoning-based user queries. Any mathematical word problems should also be handled with this tool.

Now that we have a rough application design, we can begin thinking about building this application.

Understanding promptulate Agents

Promptulate agents are designed to enhance interaction with language models by providing an interface for more complex and interactive tasks. We can think of an agent as an intermediary between users and a large language model. Agents seek to break down a seemingly complex user query, that our LLM might not be able to tackle on its own, into easier, actionable steps.

In our application flow, we defined a few different tools that we would like to use for our math application. Based on the user input, the agent should decide which of these tools to use. If a tool is not required, it should not be used. Promptulate agents can simplify this for us. These agents use a language model to choose a sequence of actions to take. Essentially, the LLM acts as the “brain” of the agent, guiding it on which tool to use for a particular query, and in which order. This is different from Proptulate chains where the sequence of actions are hardcoded in code. Promptulate offers a wide set of tools that can be integrated with an agent. These tools include, and are not limited to, online search tools, API-based tools, chain-based tools etc. For more information on Promptulate agents and their types, see this.

Step-by-Step Implementation

Step 1

Create a chatbot.py script and import the necessary dependencies:

from promptulate.llms import ChatOpenAI
from promptulate.tools.wikipedia.tools import wikipedia_search
from promptulate.tools.math.tools import calculator
import promptulate as pne

Step 2

Next, we will define our OpenAI-based Language Model.The architectural design of promptulate is easily compatible with different large language model extensions. In promptulate, llm is responsible for the most basic part of content generation, so it is the most basic component.By default, ChatOpenAI in promptulate uses the gpt-3.5-turbo model.

llm = pne.LLMFactory.build(model_name="gpt-4-turbo", model_config={"temperature": 0.5})

We would be using this LLM both within our math and reasoning process and as the decision maker for our agent.

Step 3

When constructing your own agent, you will need to provide it with a list of tools that it can use. Difine a tool, the only you need to do is to provide a function to Promptulate. Promptulate will automatically convert it to a tool that can be used by the language learning model (LLM). The final presentation result it presents to LLM is an OpenAI type JSON schema declaration.

Actually, Promptulate will analysis function name, parameters type, parameters attribution, annotations and docs when you provide the function. We strongly recommend that you use the official best practices of Template for function writing. The best implementation of a function requires adding type declarations to its parameters and providing function level annotations. Ideally, declare the meaning of each parameter within the annotations.

We will now create our three tools. The first one will be the online tool using the Wikipedia API wrapper:

# Wikipedia Tool
def wikipedia_tool(keyword: str) -> str:
    """search by keyword in web.

    A useful tool for searching the Internet to find information on world events,
    issues, dates,years, etc. Worth using for general topics. Use precise questions.

    Args:
        keyword: keyword to search

    Returns:
        str: search result
    """
    return wikipedia_search(keyword)

Next, let’s define the tool that we will be using for calculating any numerical expressions. Promptulate offers the calculator which uses the numexpr Python library to calculate mathematical expressions. It is also important that we clearly define what this tool would be used for. The description can be helpful for the agent in deciding which tool to use from a set of tools for a particular user query.

# calculator tool for arithmetics
def math_tool(expression: str):
    """Useful for when you need to answer questions about math. This tool is only
    for math questions and nothing else. Only input math expressions.

    Args:
        expression: A mathematical expression, eg: 18^0.43

    Attention:
        Expressions can not exist variables!
        eg: (current age)^0.43 is wrong, you should use 18^0.43 instead.

    Returns:
        The result of the evaluation.
    """
    return calculator(expression)

Finally, we will be defining the tool for logic/reasoning-based queries. We will first create a prompt to instruct the model with executing the specific task. Then we will create a simple AssistantMessage for this tool, passing it the LLM and the prompt.

# reasoning based tool
def word_problem_tool(question: str) -> str:
    """
    Useful for when you need to answer logic-based/reasoning questions.

    Args:
        question(str): Detail question, the description of the problem requires a
        detailed question context. Include a description of the problem

    Returns:
        question answer
    """
    system_prompt: str = """You are a reasoning agent tasked with solving t he user's logic-based questions.
    Logically arrive at the solution, and be factual.
    In your answers, clearly detail the steps involved and give the final answer.
    Provide the response in bullet points."""  # noqa
    llm = ChatOpenAI()
    return llm(f"{system_prompt}\n\nQuestion:{question}Answer:")

Step 4

We will now initialize our agent with the tools we have created above. We will also specify the LLM to help it choose which tools to use and in what order:

# agent
agent = pne.ToolAgent(tools=[wikipedia_tool, math_tool, word_problem_tool],
                      llm=llm)

resp: str = agent.run("I have 3 apples and 4 oranges.I give half of my oranges away and buy two dozen new ones,along with three packs of strawberries.Each pack of strawberry has 30 strawberries.How many total pieces of fruit do I have at the end?")
print(resp)
[31;1m[1;3m[Agent] Tool Agent start...[0m
[36;1m[1;3m[User instruction] I have 3 apples and 4 oranges.I give half of my oranges away and buy two dozen new ones,along with three packs of strawberries.Each pack of strawberry has 30 strawberries.How many total pieces of fruit do I have at the end?[0m
[33;1m[1;3m[Thought] I should break down the problem step by step and calculate the total number of fruits at the end.[0m
[33;1m[1;3m[Action] word_problem_tool args: {'question': 'I have 3 apples and 4 oranges. I give half of my oranges away and buy two dozen new ones, along with three packs of strawberries. Each pack of strawberry has 30 strawberries. How many total pieces of fruit do I have at the end?'}[0m
[33;1m[1;3m[Observation] To solve this problem, we can break it down into steps and calculate the total number of fruit pieces you have at the end:

Initial fruits:
- 3 apples
- 4 oranges

Giving away half of the oranges:
- You have 4 oranges, so you give away 4/2 = 2 oranges.
- After giving away 2 oranges, you have 4 - 2 = 2 oranges remaining.

Buying new fruits:
- You buy 2 dozen new oranges, where 1 dozen is equal to 12.
- 2 dozen oranges is 2 * 12 = 24 oranges.
- You also buy 3 packs of strawberries, with each pack having 30 strawberries.
- Total strawberries bought = 3 * 30 = 90 strawberries.

Calculating total fruit pieces at the end:
- After giving away half of your oranges, you have 2 oranges left.
- Adding the new oranges bought, you have a total of 2 + 24 = 26 oranges.
- You initially had 3 apples, so the total apples remain 3.
- You bought 90 strawberries.
- Total fruits at the end = Total oranges + Total apples + Total strawberries
- Total fruits = 26 oranges + 3 apples + 90 strawberries = 26 + 3 + 90 = 119 pieces of fruit

Therefore, at the end of the scenario, you have a total of 119 pieces of fruit.[0m
[32;1m[1;3m[Agent Result] You have a total of 119 pieces of fruit at the end of the scenario.[0m
[38;5;200m[1;3m[Agent] Agent End.[0m
You have a total of 119 pieces of fruit at the end of the scenario.

The app’s response to a logic question is following:

Creating streamlit application

We will be using Streamlit, an open-source Python framework, to build our application. With Streamlit, you can build conversational AI applications with a few simple lines of code. Using streamlit to build the demo of application is demonstrated in the peer child file chabot.py of the notebook file. You can run the file directly with the command streamlit run chatbot.py to view the effect and debug the web page.

Let’s begin by importing the Streamlit package to our chatbot.py script: pip install Streamlit == 1.28

import streamlit as st

Then,let’s build a lifecycle class to display the intermediate state of the agent response on the chat page.If you want to learn more about the life cycle, please click here

from promptulate.hook import Hook, HookTable

class MidStepOutHook:
    @staticmethod
    def handle_agent_revise_plan(*args, **kwargs):
        messages = f"[Revised Plan] {kwargs['revised_plan']}"
        st.chat_message("assistant").write(messages)

    @staticmethod
    def handle_agent_action(*args, **kwargs):
        messages = f"[Thought] {kwargs['thought']}\n"
        messages += f"[Action] {kwargs['action']} args: {kwargs['action_input']}"
        st.chat_message("assistant").write(messages)

    @staticmethod
    def handle_agent_observation(*args, **kwargs):
        messages = f"[Observation] {kwargs['observation']}"
        st.chat_message("assistant").write(messages)

    @staticmethod
    def registry_hooks():
        """Registry and enable stdout hooks. StdoutHook can print colorful
        information."""
        Hook.registry_hook(
            HookTable.ON_AGENT_REVISE_PLAN,
            MidStepOutHook.handle_agent_revise_plan,
            "component",
        )
        Hook.registry_hook(
            HookTable.ON_AGENT_ACTION, MidStepOutHook.handle_agent_action, "component"
        )
        Hook.registry_hook(
            HookTable.ON_AGENT_OBSERVATION,
            MidStepOutHook.handle_agent_observation,
            "component",
        )

Next,Let’s build a function,and We will be adding our LLM, tools and agent initialization code to this function.

def build_agent(api_key: str) -> pne.ToolAgent:
    MidStepOutHook.registry_hooks()

    # calculator tool for arithmetics
    def math_tool(expression: str):
        """Useful for when you need to answer questions about math. This tool is only
        for math questions and nothing else. Only input math expressions.

        Args:
            expression: A mathematical expression, eg: 18^0.43

        Attention:
            Expressions can not exist variables!
            eg: (current age)^0.43 is wrong, you should use 18^0.43 instead.

        Returns:
            The result of the evaluation.
        """
        return calculator(expression)

    # reasoning based tool
    def word_problem_tool(question: str) -> str:
        """
        Useful for when you need to answer logic-based/reasoning questions.

        Args:
            question(str): Detail question, the description of the problem requires a
            detailed question context. Include a description of the problem

        Returns:
            question answer
        """
        system_prompt: str = """You are a reasoning agent tasked with solving t he user's logic-based questions.
        Logically arrive at the solution, and be factual.
        In your answers, clearly detail the steps involved and give the final answer.
        Provide the response in bullet points."""  # noqa
        llm = ChatOpenAI(private_api_key=api_key)
        return llm(f"{system_prompt}\n\nQuestion:{question}Answer:")

    # Wikipedia Tool
    def wikipedia_tool(keyword: str) -> str:
        """search by keyword in web.

        A useful tool for searching the Internet to find information on world events,
        issues, dates,years, etc. Worth using for general topics. Use precise questions.

        Args:
            keyword: keyword to search

        Returns:
            str: search result
        """
        return wikipedia_search(keyword)

    llm = ChatOpenAI(model="gpt-4-1106-preview", private_api_key=api_key)
    return pne.ToolAgent(tools=[wikipedia_tool, math_tool, word_problem_tool], llm=llm)

Set the style of our application

# Create a sidebar to place the user parameter configuration
with st.sidebar:
    openai_api_key = st.text_input(
        "OpenAI API Key", key="chatbot_api_key", type="password"
    )
    "[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
    "[View the source code](https://github.com/hizeros/llm-streamlit/blob/master/Chatbot.py)"  # noqa
    
# Set title
st.title("💬 Math Wiz")
st.caption("🚀 Hi there! 👋 I am a reasoning tool by Promptulate to help you "
           "with your math or logic-based reasoning questions.")

Next, check our session state and render the user input and agent response to the chat page, so that we successfully build a simple math application using streamlit

# Determine whether to initialize the message variable
# otherwise initialize a message dictionary
if "messages" not in st.session_state:
    st.session_state["messages"] = [
        {"role": "assistant", "content": "How can I help you?"}
    ]

# Traverse messages in session state
for msg in st.session_state.messages:
    st.chat_message(msg["role"]).write(msg["content"])

# User input
if prompt := st.chat_input():
    if not openai_api_key:
        st.info("Please add your OpenAI API key to continue.")
        st.stop()

    agent: pne.ToolAgent = build_agent(api_key=openai_api_key)

    # Add the message entered by the user to the list of messages in the session state
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display in the chat interface
    st.chat_message("user").write(prompt)

    response: str = agent.run(prompt)

    st.session_state.messages.append({"role": "assistant", "content": response})
    st.chat_message("assistant").write(response)

Let’s try to run it:streamlit run chatbot.py
The running result is as follows:

Examples of other questions are given below for testing reference:

  1. Question 1
    • I have 3 apples and 4 oranges.I give half of my oranges away and buy two dozen new ones,along with three packs of strawberries.Each pack of strawberry has 30 strawberries.How many total pieces of fruit do I have at the end?
    • correct answer = 119
  2. Question 2
    • What is the cube root of 625?
    • correct answer = 8.5498
  3. Question 3
    • what is cube root of 81? Multiply with 13.27, and subtract 5.
    • correct answer = 52.4195
  4. Question 4
    • Steve’s sister is 10 years older than him. Steve was born when the cold war
      ended. When was Steve’s sister born?
    • correct answer = 1991 - 10 = 1981
  5. Question 5
    • Tell me the year in which Tom Cruise’s Top Gun was released, and calculate the square of that year.
    • correct answer = 1986**2 = 3944196

Summary

本项目展示了如何利用当前的AI技术和工具来构建一个实用的数学辅助应用。“Math Wiz”能够处理从简单的数学计算到复杂的逻辑推理问题,是一个结合了多种技术的创新示例。通过这个应用,用户可以得到快速准确的数学问题解答,同时也展示了人工智能在教育和日常生活中的潜力。

对于希望深入了解或自行构建此类应用的开发者,本文提供的详细步骤和代码示例是一个宝贵的资源。此外,通过提供的GitHub链接,读者可以直接访问完整的代码,进一步探索和修改以满足特定的需求或兴趣。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/600014.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自动化运维管理工具 Ansible-----【inventory 主机清单和playbook剧本】

目录 一、inventory 主机清单 1.1inventory 中的变量 1.1.1主机变量 1.1.2组变量 1.1.3组嵌套 二、Ansible 的脚本 ------ playbook(剧本) 2.1 playbook介绍 2.2playbook格式 2.3playbooks 的组成 2.4playbook编写 2.5运行playbook 2.5.1ans…

学习笔记:【QC】Android Q qmi扩展nvReadItem/nvWriteItem

一、qmi初始化 流程图 初始化流程: 1、主入口: vendor/qcom/proprietary/qcril-hal/qcrild/qcrild/rild.c int main(int argc, char **argv) { const RIL_RadioFunctions *(*rilInit)(const struct RIL_Env *, int, char **); rilInit RIL_Init; funcs rilInit…

【Linux】Linux线程

一、Linux线程的概念 1.什么是线程 1.一个进程的一个执行线路叫做线程,线程的一个进程内部的控制序列。 2.一个进程至少有一个执行线程 3.线程在进程内部,本质是在进程地址空间内运行 4.操作系统将进程虚拟地址空间的资源分配给每个执行流&#xff0…

基于51单片机的闭环反馈直流电机PWM控制电机转速测量( proteus仿真+程序+设计报告+原理图+讲解视频)

基于51单片机的闭环反馈直流电机PWM控制转速测量( proteus仿真程序设计报告原理图讲解视频) 仿真图proteus7.8及以上 程序编译器:keil 4/keil 5 编程语言:C语言 设计编号:S0086 1. 主要功能: 基于51单片机的闭环…

js宏任务微任务输出解析

第一种情况 setTimeout(function () {console.log(setTimeout 1) //11 宏任务new Promise(function (resolve) {console.log(promise 1) //12 同步函数resolve()}).then(function () {console.log(promise then) //13 微任务})})async function async1() {console.log(async1 s…

语音识别--使用YAMNet识别环境音

⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟 🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号&#xf…

2024.5.7

//头文件#ifndef MYWIDGET_H #define MYWIDGET_H#include <QWidget> #include <QPushButton> #include <QLineEdit> #include <QLabel> #include <QTextToSpeech> #include <QString> #include <QtDebug> #include <QIcon> #i…

js浏览器请求,post请求中的参数形式和form-data提交数据时数据格式问题(2024-05-06)

浏览器几种常见的post请求方式 Content-Type 属性规定在发送到服务器之前应该如何对表单数据进行编码。 默认表单数据会编码为 "application/x-www-form-urlencoded" post请求的参数一般放在Body里。 Content-Type&#xff08;内容类型&#xff09;&#xff0c;一般…

截图工具Snipaste:不仅仅是截图,更是效率的提升

在数字时代&#xff0c;截图工具已成为我们日常工作和生活中不可或缺的一部分。无论是用于工作汇报、学习笔记&#xff0c;还是日常沟通&#xff0c;一款好用的截图工具都能大大提升我们的效率。今天&#xff0c;我要向大家推荐一款功能强大且易于使用的截图软件——Snipaste。…

CRC校验原理及步骤

文章目录 CRC定义&#xff1a;CRC校验原理&#xff1a;CRC校验步骤&#xff1a; CRC定义&#xff1a; CRC即循环冗余校验码&#xff0c;是数据通信领域中最常用的一种查错校验码&#xff0c;其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查&#xff08;CRC&#…

JUC-synchronized练习-交替打印ABC

今天来练习一下synchronized 简单来利用synchronized实现一个字符串的交替打印 主要的实现设置一个全局的变量state&#xff0c;线程执行通过不断累加state&#xff0c;根据state对三取余的结果来判断该线程是否继续执行还是进入等待。并通过synchronized锁住一个共享变量loc…

设计模式之模板模式TemplatePattern(五)

一、模板模式介绍 模板方法模式&#xff08;Template Method Pattern&#xff09;&#xff0c;又叫模板模式&#xff08;Template Pattern&#xff09;&#xff0c; 在一个抽象类公开定义了执行它的方法的模板。它的子类可以更需要重写方法实现&#xff0c;但可以成为典型类中…

学习R语言第五天

文章目录 语法学习创建数据的方式绘制图形的方式图形添加颜色如何操作数据的方式数据进行验算的判断加付值的方式修改变量名称的方式判断是否存在缺失值在计算的方式忽略缺失值通过函数的方式忽略缺失值日期处理的方式字符串转化成日期的方式格式化数据框中数据返回当前的日期的…

保研面试408复习 1——操作系统、计网、计组

文章目录 1、操作系统一、操作系统的特点和功能二、中断和系统调用的区别 2、计算机组成原理一、冯诺依曼的三个要点二、MIPS&#xff08;每秒百万条指令&#xff09;三、CPU执行时间和CPI 3、计算机网络一、各个层常用协议二、网络协议实验——数据链路层a.网络速率表示b.数据…

《十八》QThread多线程组件

本章将重点介绍如何运用QThread组件实现多线程功能。 多线程技术在程序开发中尤为常用&#xff0c;Qt框架中提供了QThread库来实现多线程功能。当你需要使用QThread时&#xff0c;需包含QThread模块&#xff0c;以下是QThread类的一些主要成员函数和槽函数。 成员函数/槽函数 …

Linux内核之获取文件系统超级块:sget用法实例(六十八)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

EMAIL-PHP功能齐全的发送邮件类可以发送HTML和附件

EMAIL-PHP功能齐全的发送邮件类可以发送HTML和附件 <?php class Email { //---设置全局变量 var $mailTo ""; // 收件人 var $mailCC ""; // 抄送 var $mailBCC ""; // 秘密抄送 var $mailFrom ""; // 发件人 var $mailSubje…

如何查看慢查询

4.2 如何查看慢查询 知道了以上内容之后&#xff0c;那么咱们如何去查看慢查询日志列表呢&#xff1a; slowlog len&#xff1a;查询慢查询日志长度slowlog get [n]&#xff1a;读取n条慢查询日志slowlog reset&#xff1a;清空慢查询列表 5、服务器端优化-命令及安全配置 安…

6.Nginx

Nginx反向代理 将前端发送的动态请求有Nginx转发到后端服务器 那为何要多一步转发而不直接发送到后端呢&#xff1f; 反向代理的好处&#xff1a; 提高访问速度&#xff08;可以在nginx做缓存&#xff0c;如果请求的是同样的接口地址&#xff0c;这样就不用多次请求后端&#…

本地运行AI大模型简单示例

一、引言 大模型LLM英文全称是Large Language Model&#xff0c;是指包含超大规模参数&#xff08;通常在十亿个以上&#xff09;的神经网络模型。2022年11月底&#xff0c;人工智能对话聊天机器人ChatGPT一经推出&#xff0c;人们利用ChatGPT这样的大模型帮助解决很多事情&am…